16 research outputs found

    Enhancing chemosensitivity to gemcitabine via RNA interference targeting the catalytic subunits of protein kinase CK2 in human pancreatic cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is a complex genetic disorder that is characterized by rapid progression, invasiveness, resistance to treatment and high molecular heterogeneity. Various agents have been used in clinical trials showing only modest improvements with respect to gemcitabine-based chemotherapy, which continues to be the standard first-line treatment for this disease. However, owing to the overwhelming molecular alterations that have been reported in pancreatic cancer, there is increasing focus on targeting molecular pathways and networks, rather than individual genes or gene-products with a combination of novel chemotherapeutic agents.</p> <p>Methods</p> <p>Cells were transfected with small interfering RNAs (siRNAs) targeting the individual CK2 subunits. The CK2 protein expression levels were determined and the effect of its down-regulation on chemosensitization of pancreatic cancer cells was investigated.</p> <p>Results</p> <p>The present study examined the impact on cell death following depletion of the individual protein kinase CK2 catalytic subunits alone or in combination with gemcitabine and the molecular mechanisms by which this effect is achieved. Depletion of the CK2α or -α' subunits in combination with gemcitabine resulted in marked apoptotic and necrotic cell death in PANC-1 cells. We show that the mechanism of cell death is associated with deregulation of distinct survival signaling pathways. Cellular depletion of CK2α leads to phosphorylation and activation of MKK4/JNK while down-regulation of CK2α' exerts major effects on the PI3K/AKT pathway.</p> <p>Conclusions</p> <p>Results reported here show that the two catalytic subunits of CK2 contribute differently to enhance gemcitabine-induced cell death, the reduced level of CK2α' being the most effective and that simultaneous reduction in the expression of CK2 and other survival factors might be an effective therapeutic strategy for enhancing the sensitivity of human pancreatic cancer towards chemotherapeutic agents.</p

    Relationship between treatment delay and final infarct size in STEMI patients treated with abciximab and primary PCI

    Get PDF
    Background Studies on the impact of time to treatment on myocardial infarct size have yielded   conflicting results. In this study of ST-Elevation Myocardial Infarction (STEMI) treated   with primary percutaneous coronary intervention (PCI), we set out to investigate the   relationship between the time from First Medical Contact (FMC) to the demonstration   of an open infarct related artery (IRA) and final scar size. Between February 2006 and September 2007, 89 STEMI patients treated with primary PCI   were studied with contrast enhanced magnetic resonance imaging (ceMRI) 4 to 8 weeks   after the infarction. Spearman correlation was computed for health care delay time   (defined as time from FMC to PCI) and myocardial injury. Multiple linear regression   was used to determine covariates independently associated with infarct size. Results An occluded artery (Thrombolysis In Myocardial Infarction, TIMI flow 0-1 at initial   angiogram) was seen in 56 patients (63%). The median FMC-to-patent artery was 89 minutes.   There was a weak correlation between time from FMC-to-patent IRA and infarct size,   r = 0.27, p = 0.01. In multiple regression analyses, LAD as the IRA, smoking and an occluded vessel   at the first angiogram, but not delay time, correlated with infarct size. Conclusions In patients with STEMI treated with primary PCI we found a weak correlation between   health care delay time and infarct size. Other factors like anterior infarction, a   patent artery pre-PCI and effects of reperfusion injury may have had greater influence   on infarct size than time-to-treatment per se

    DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mosquitoes belonging to the Albitarsis Group (<it>Anopheles</it>: <it>Nyssorhynchus</it>) are of importance as malaria vectors across the Neotropics. The Group currently comprises six known species, and recent studies have indicated further hidden biodiversity within the Group. DNA barcoding has been proposed as a highly useful tool for species recognition, although its discriminatory utility has not been verified in closely related taxa across a wide geographic distribution.</p> <p>Methods</p> <p>DNA barcodes (658 bp of the mtDNA <it>Cytochrome c Oxidase </it>- <it>COI</it>) were generated for 565 <it>An. albitarsis </it>s.l. collected in Argentina, Brazil, Colombia, Paraguay, Trinidad and Venezuela over the past twenty years, including specimens from type series and type localities. Here we test the utility of currently advocated barcoding methodologies, including the Kimura-two-parameter distance model (K2P) and Neighbor-joining analysis (NJ), for determining species delineation within mosquitoes of the Neotropical Albitarsis Group of malaria vectors (<it>Anopheles</it>: <it>Nyssorhynchus</it>), and compare results with Bayesian analysis.</p> <p>Results</p> <p>Species delineation through barcoding analysis and Bayesian phylogenetic analysis, fully concur. Analysis of 565 sequences (302 unique haplotypes) resolved nine NJ tree clusters, with less than 2% intra-node variation. Mean intra-specific variation (K2P) was 0.009 (range 0.002 - 0.014), whereas mean inter-specific divergence were several-fold higher at 0.041 (0.020 - 0.056), supporting the reported "barcoding gap". These results show full support for separate species status of the six known species in the Albitarsis Group (<it>An. albitarsis </it>s.s., <it>An. albitarsis </it>F, <it>An. deaneorum</it>, <it>An. janconnae</it>, <it>An. marajoara </it>and <it>An. oryzalimnetes</it>), and also support species level status for two previously detected lineages - <it>An. albitarsis </it>G &<it>An. albitarsis </it>I (designated herein). In addition, we highlight the presence of a unique mitochondrial lineage close to <it>An. deaneorum </it>and <it>An. marajoara </it>(<it>An. albitarsis </it>H) from Rondônia and Mato Grosso in southwestern Brazil. Further integrated studies are required to confirm the status of this lineage.</p> <p>Conclusions</p> <p>DNA barcoding provides a reliable means of identifying both known and undiscovered biodiversity within the closely related taxa of the Albitarsis Group. We advocate its usage in future studies to elucidate the vector competence and respective distributions of all eight species in the Albitarsis Group and the novel mitochondrial lineage (<it>An. albitarsis </it>H) recovered in this study.</p

    A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies

    Get PDF
    Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201

    Cytotoxic effects exerted by pentachlorophenol by targeting nodal pro-survival signalling pathways in human pancreatic cancer cells

    No full text
    Pancreatic adenocarcinoma is one of the deadliest human solid tumors in the developed countries characterized by high resistance toward chemotherapeutic treatment. We have previously shown that silencing of the pro-survival protein kinase CK2 by RNA interference contributes to enhance the cytotoxicity of the chemotherapeutic agent 2′,2′-difluoro 2′-deoxycytidine (gemcitabine). Initial experiments showed that pentachlorophenol (PCP) inhibits CK2 and induces cell death in human pancreatic cancer cell lines. We report here evidence that exposure of this type of cells to PCP induces caspase-mediated apoptosis, inhibition of the lysosome cysteine protease cathepsin B and mitochondrial membrane depolarization. Beside cellular inhibition of CK2, the analysis of signaling pathways deregulated in pancreatic cancer cells revealed that PCP causes decreased phosphorylation levels of NF-κB/p65, suppresses its nuclear translocation and leads to activation of JNK-mediated stress response. Surprisingly, exposure to PCP results in increased phosphorylation levels of AKT at the canonical S473 and T308 activation sites supporting previous data showing that AKT phosphorylation is not predictive of tumor cell response to treatment. Taken together, our study provides novel insights into the effects induced by the exposure of pancreatic cancer cells to chlorinated aromatic compounds posing the basis for more advanced studies in vivo

    Natural Compound Library Screening Identifies New Molecules for the Treatment of Cardiac Fibrosis and Diastolic Dysfunction.

    Get PDF
    High-throughput natural compound library screening identified 15 substances with antiproliferative effects in human cardiac fibroblasts. Using multiple in vitro fibrosis assays and stringent selection algorithms, we identified the steroid bufalin (from Chinese toad venom) and the alkaloid lycorine (from Amaryllidaceae species) to be effective antifibrotic molecules both in vitro and in vivo, leading to improvement in diastolic function in 2 hypertension-dependent rodent models of cardiac fibrosis. Administration at effective doses did not change plasma damage markers or the morphology of kidney and liver, providing the first toxicological safety data. Using next-generation sequencing, we identified the conserved microRNA 671-5p and downstream the antifibrotic selenoprotein P1 as common effectors of the antifibrotic compounds

    Natural Compound Library Screening Identifies New Molecules for the Treatment of Cardiac Fibrosis and Diastolic Dysfunction

    No full text
    BACKGROUND: Myocardial fibrosis is a hallmark of cardiac remodeling and functionally involved in heart failure development, a leading cause of deaths worldwide. Clinically, no therapeutic strategy is available that specifically attenuates maladaptive responses of cardiac fibroblasts, the effector cells of fibrosis in the heart. Therefore, our aim was to develop novel antifibrotic therapeutics based on naturally derived substance library screens for the treatment of cardiac fibrosis. METHODS: Antifibrotic drug candidates were identified by functional screening of 480 chemically diverse natural compounds in primary human cardiac fibroblasts, subsequent validation, and mechanistic in vitro and in vivo studies. Hits were analyzed for dose-dependent inhibition of proliferation of human cardiac fibroblasts, modulation of apoptosis, and extracellular matrix expression. In vitro findings were confirmed in vivo with an angiotensin II–mediated murine model of cardiac fibrosis in both preventive and therapeutic settings, as well as in the Dahl salt-sensitive rat model. To investigate the mechanism underlying the antifibrotic potential of the lead compounds, treatment-dependent changes in the noncoding RNAome in primary human cardiac fibroblasts were analyzed by RNA deep sequencing. RESULTS: High-throughput natural compound library screening identified 15 substances with antiproliferative effects in human cardiac fibroblasts. Using multiple in vitro fibrosis assays and stringent selection algorithms, we identified the steroid bufalin (from Chinese toad venom) and the alkaloid lycorine (from Amaryllidaceae species) to be effective antifibrotic molecules both in vitro and in vivo, leading to improvement in diastolic function in 2 hypertension-dependent rodent models of cardiac fibrosis. Administration at effective doses did not change plasma damage markers or the morphology of kidney and liver, providing the first toxicological safety data. Using next-generation sequencing, we identified the conserved microRNA 671-5p and downstream the antifibrotic selenoprotein P1 as common effectors of the antifibrotic compounds. CONCLUSIONS: We identified the molecules bufalin and lycorine as drug candidates for therapeutic applications in cardiac fibrosis and diastolic dysfunction
    corecore