249 research outputs found
Design of artificial neural oscillatory circuits for the control of lamprey- and salamander-like locomotion using evolutionary algorithms
This dissertation investigates the evolutionary design of oscillatory artificial neural
networks for the control of animal-like locomotion. It is inspired by the neural organ¬
isation of locomotor circuitries in vertebrates, and explores in particular the control
of undulatory swimming and walking. The difficulty with designing such controllers
is to find mechanisms which can transform commands concerning the direction and
the speed of motion into the multiple rhythmic signals sent to the multiple actuators
typically involved in animal-like locomotion. In vertebrates, such control mechanisms
are provided by central pattern generators which are neural circuits capable of pro¬
ducing the patterns of oscillations necessary for locomotion without oscillatory input
from higher control centres or from sensory feedback. This thesis explores the space of
possible neural configurations for the control of undulatory locomotion, and addresses
the problem of how biologically plausible neural controllers can be automatically generated.Evolutionary algorithms are used to design connectionist models of central pattern
generators for the motion of simulated lampreys and salamanders. This work is inspired
by Ekeberg's neuronal and mechanical simulation of the lamprey [Ekeberg 93]. The
first part of the thesis consists of developing alternative neural controllers for a similar
mechanical simulation. Using a genetic algorithm and an incremental approach, a
variety of controllers other than the biological configuration are successfully developed
which can control swimming with at least the same efficiency. The same method
is then used to generate synaptic weights for a controller which has the observed
biological connectivity in order to illustrate how the genetic algorithm could be used
for developing neurobiological models. Biologically plausible controllers are evolved
which better fit physiological observations than Ekeberg's hand-crafted model. Finally,
in collaboration with Jerome Kodjabachian, swimming controllers are designed using a
developmental encoding scheme, in which developmental programs are evolved which
determine how neurons divide and get connected to each other on a two-dimensional
substrate.The second part of this dissertation examines the control of salamander-like swimming
and trotting. Salamanders swim like lampreys but, on the ground, they switch to a
trotting gait in which the trunk performs a standing wave with the nodes at the girdles.
Little is known about the locomotion circuitry of the salamander, but neurobiologists
have hypothesised that it is based on a lamprey-like organisation. A mechanical sim¬
ulation of a salamander-like animat is developed, and neural controllers capable of
exhibiting the two types of gaits are evolved. The controllers are made of two neural
oscillators projecting to the limb motoneurons and to lamprey-like trunk circuitry. By
modulating the tonic input applied to the networks, the type of gait, the speed and
the direction of motion can be varied.By developing neural controllers for lamprey- and salamander-like locomotion, this
thesis provides insights into the biological control of undulatory swimming and walking, and shows how evolutionary algorithms can be used for developing neurobiological
models and for generating neural controllers for locomotion. Such a method could potentially be used for designing controllers for swimming or walking robots, for instance
Roombots -- Mechanical Design of Self-Reconfiguring Modular Robots for Adaptive Furniture
We aim at merging technologies from information technology, roomware, and robotics in order to design adaptive and intelligent furniture. This paper presents design principles for our modular robots, called Roombots, as future building blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection and disconnection of modules and rotations of the degrees of freedom. We are furthermore interested in applying Roombots towards adaptive behaviour, such as online learning of locomotion patterns. To create coordinated and efficient gait patterns, we use a Central Pattern Generator (CPG) approach, which can easily be optimized by any gradient-free optimization algorithm. To provide a hardware framework we present the mechanical design of the Roombots modules and an active connection mechanism based on physical latches. Further we discuss the application of our Roombots modules as pieces of a homogenic or heterogenic mix of building blocks for static structures
Locomotion Gait Optimization For Modular Robots; Coevolving Morphology and Control
This study aims at providing a control-learning framework capable of generating optimal locomotion patterns for the modular robots. The key ideas are firstly to provide a generic control structure that can be well-adapted for the different morphologies and secondly to exploit and coevolve both morphology and control aspects. A generic framework combining robot morphology, control and environment and on the top of them optimization and evolutionary algorithms are presented. The details of the components and some of the preliminary results are discussed. (C) Selection and peer-review under responsibility of FET11 conference organizers and published by Elsevier B.V
Pattern generators with sensory feedback for the control of quadruped locomotion
Central Pattern Generators (CPGs) are becoming a popular model for the control of locomotion of legged robots. Biological CPGs are neural networks responsible for the generation of rhythmic movements, especially locomotion. In robotics, a systematic way of designing such CPGs as artificial neural networks or systems of coupled oscillators with sensory feedback inclusion is still missing. In this contribution, we present a way of designing CPGs with coupled oscillators in which we can independently control the ascending and descending phases of the oscillations (i.e. the swing and stance phases of the limbs). Using insights from dynamical system theory, we construct generic networks of oscillators able to generate several gaits under simple parameter changes. Then we introduce a systematic way of adding sensory feedback from touch sensors in the CPG such that the controller is strongly coupled with the mechanical system it controls. Finally we control three different simulated robots (iCub, Aibo and Ghostdog) using the same controller to show the effectiveness of the approach. Our simulations prove the importance of independent control of swing and stance duration. The strong mutual coupling between the CPG and the robot allows for more robust locomotion, even under non precise parameters and non-flat environmen
Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model
This article presents a control architecture for controlling the locomotion of an amphibious snake/lamprey robot capable of swimming and serpentine locomotion. The control architecture is based on a central pattern generator (CPG) model inspired from the neural circuits controlling locomotion in the lamprey's spinal cord. The CPG model is implemented as a system of coupled nonlinear oscillators on board of the robot. The CPG generates coordinated travelling waves in real time while being interactively modulated by a human-operator. Interesting aspects of the CPG model include (1) that it exhibits limit cycle behavior (i.e. it produces stable rhythmic patterns that are robust against perturbations), (2) that the limit cycle behavior has a closed-form solution which provides explicit control over relevant characteristics such as frequency, amplitude and wavelength of the travelling waves, and (3) that the control parameters of the CPG can be continuously and interactively modulated by a human operator to offer high maneuverability. We demonstrate how the CPG allows one to easily adjust the speed and direction of locomotion both in water and on ground while ensuring that continuous and smooth setpoints; are sent to the robot's actuated joints
Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs
In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2 to 3 primitives) than kinematic patterns from on-ground locomotion (4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware
A Salamander's Flexible Spinal Network for Locomotion, Modeled at Two Levels of Abstraction
Animals have to coordinate a large number of muscles in different ways to efficiently move at various speeds and in different and complex environments. This coordination is in large part based on central pattern generators (CPGs). These neural networks are capable of producing complex rhythmic patterns when activated and modulated by relatively simple control signals. Although the generation of particular gaits by CPGs has been successfully modeled at many levels of abstraction, the principles underlying the generation and selection of a diversity of patterns of coordination in a single neural network are still not well understood. The present work specifically addresses the flexibility of the spinal locomotor networks in salamanders. We compare an abstract oscillator model and a CPG network composed of integrate-and-fire neurons, according to their ability to account for different axial patterns of coordination, and in particular the transition in gait between swimming and stepping modes. The topology of the network is inspired by models of the lamprey CPG, complemented by additions based on experimental data from isolated spinal cords of salamanders. Oscillatory centers of the limbs are included in a way that preserves the flexibility of the axial network. Similarly to the selection of forward and backward swimming in lamprey models via different excitation to the first axial segment, we can account for the modification of the axial coordination pattern between swimming and forward stepping on land in the salamander model, via different uncoupled frequencies in limb versus axial oscillators (for the same level of excitation). These results transfer partially to a more realistic model based on formal spiking neurons, and we discuss the difference between the abstract oscillator model and the model built with formal spiking neuron
- …