15 research outputs found

    Multicenter Evaluation of the QIAstat-Dx Respiratory Panel for the Detection of Viruses and Bacteria in Nasopharyngeal Swab Specimens

    Get PDF
    The QIAstat-Dx Respiratory Panel (QIAstat-Dx RP) is a multiplex in vitro diagnostic test for the qualitative detection of 20 pathogens directly from nasopharyngeal swab (NPS) specimens. The assay is performed using a simple sample-to-answer platform with results available in approximately 69 min. The pathogens identified are adenovirus, coronavirus 229E, coronavirus HKU1, coronavirus NL63, coronavirus OC43, human metapneumovirus A and B, influenza A, influenza A H1, influenza A H3, influenza A H1N1/2009, influenza B, parainfluenza virus 1, parainfluenza virus 2, parainfluenza virus 3, parainfluenza virus 4, rhinovirus/enterovirus, respiratory syncytial virus A and B, Bordetella pertussis, Chlamydophila pneumoniae, and Mycoplasma pneumoniae. This multicenter evaluation provides data obtained from 1,994 prospectively collected and 310 retrospectively collected (archived) NPS specimens with performance compared to that of the BioFire FilmArray Respiratory Panel, version 1.7. The overall percent agreement between QIAstat-Dx RP and the comparator testing was 99.5%. In the prospective cohort, the QIAstat-Dx RP demonstrated a positive percent agreement of 94.0% or greater for the detection of all but four analytes: coronaviruses 229E, NL63, and OC43 and rhinovirus/enterovirus. The test also demonstrated a negative percent agreement of ≥97.9% for all analytes. The QIAstat-Dx RP is a robust and accurate assay for rapid, comprehensive testing for respiratory pathogens

    Developmental roadmap for antimicrobial susceptibility testing systems

    Get PDF
    Antimicrobial susceptibility testing (AST) technologies help to accelerate the initiation of targeted antimicrobial therapy for patients with infections and could potentially extend the lifespan of current narrow-spectrum antimicrobials. Although conceptually new and rapid AST technologies have been described, including new phenotyping methods, digital imaging and genomic approaches, there is no single major, or broadly accepted, technological breakthrough that leads the field of rapid AST platform development. This might be owing to several barriers that prevent the timely development and implementation of novel and rapid AST platforms in health-care settings. In this Consensus Statement, we explore such barriers, which include the utility of new methods, the complex process of validating new technology against reference methods beyond the proof-of-concept phase, the legal and regulatory landscapes, costs, the uptake of new tools, reagent stability, optimization of target product profiles, difficulties conducting clinical trials and issues relating to quality and quality control, and present possible solutions

    A 5' Nuclease Genotyping Assay for Identification of Macrolide-Resistant <i>Mycoplasma genitalium</i> in Clinical Specimens

    No full text
    Rapid and sensitive detection of macrolide resistance in Mycoplasma genitalium is required for the guidance of adequate antimicrobial treatment. Previous studies have confirmed that single-base mutations at position 2058 or 2059 in domain V of the 23S rRNA gene of M. genitalium result in high-level macrolide resistance. Sequencing of PCR products remains the gold standard for the identification of mutations conferring resistance to macrolides but is laborious and time-consuming. The aim of the present study was to develop a 5′ nuclease genotyping assay to detect single nucleotide polymorphisms in the 23S rRNA gene of Mycoplasma genitalium that are associated with macrolide resistance by combining PCR with hydrolysis probes and subsequent endpoint genotyping analysis. The 5′ nuclease genotyping assay was used as a referral test to be used on M. genitalium-positive samples and was validated on 259 positive samples, of which 253 (97.7%) were successfully sequenced. With the newly developed assay, 237/259 (91.5%) investigated M. genitalium-positive samples were genotyped. The positive and the negative predictive values were 100% when evaluated on successfully genotyped samples. The newly developed assay discriminated macrolide-resistant M. genitalium in clinical specimens possessing A2058G, A2058C, A2058T, and A2059G mutations with a sensitivity of 94.4% (95% confidence interval [CI], 90.7% to 98.2%) and a specificity of 92.7% (95% CI, 87.8% to 97.6%) when evaluated on successfully sequenced samples. The assay can correctly guide antimicrobial treatment of M. genitalium infections

    Multicenter evaluation of the QIAstat Respiratory Panel—A new rapid highly multiplexed PCR based assay for diagnosis of acute respiratory tract infections

    No full text
    International audienceAcute respiratory tract infections (ARTI), including the common cold, pharyngitis, sinusitis, otitis media, bronchiolitis and pneumonia are the most common diagnoses among patients seeking medical care in western countries, and account for most antibiotic prescriptions. While a confirmed and fast ARTI diagnosis is key for antibiotic prescribing, empiric antimicrobial treatment remains common, because viral symptoms are often clinically similar and difficult to distinguish from those caused by bacteria. As a result, inappropriate antibiotic prescriptions are high and in certain settings likely higher than the commonly estimated 30%. The QIAstat Respiratory Panel® assay (QIAstat RP) is a multiplexed in vitro diagnostics test for the rapid simultaneous detection of 21 pathogens directly from respiratory samples, including human mastadenovirus A-G, primate bocaparvovirus 1+2, human coronavirus (HKU1, NL63, OC43, 229E), human metapneumovirus A/B, rhinovirus/enterovirus, influenza A virus (no subtype, subtype H1, H1N1/2009, H3), influenza B virus, human respirovirus 1+3, human orthorubulavirus 2+4, human orthopneumovirus, Bordetella pertussis, Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella pneumophila. We describe the first multicenter study of 445 respiratory samples, collected through the 2016-2017 and 2018 respiratory seasons, with performance compared against BioFire FilmArray RP v1.7 and discrepancy testing by Seegene Allplex RP. The QIAstat RP demonstrated a positive percentage of agreement of 98.0% (95% CI: 96.0-99.1%) and a negative percentage agreement of 99.8% (95% CI: 99.6-99.9%). With use of this comprehensive and rapid test, improved patient outcomes and antimicrobial stewardship may potentially be achieved

    An Agreement of Antigen Tests on Oral Pharyngeal Swabs or Less Invasive Testing With Reverse Transcription Polymerase Chain Reaction for Detecting SARS-CoV-2 in Adults: Protocol for a Prospective Nationwide Observational Study

    No full text
    BackgroundThe SARS-CoV-2 pandemic has resulted in an unprecedented level of worldwide testing for epidemiologic and diagnostic purposes, and due to the extreme need for tests, the gold-standard Reverse Transcription Polymerase Chain Reaction (RT-PCR) testing capacity has been unable to meet the overall worldwide testing demand. Consequently, although the current literature has shown the sensitivity of rapid antigen tests (RATs) to be inferior to RT-PCR, RATs have been implemented on a large scale without solid data on performance. ObjectiveThis study will compare analytical and clinical sensitivities and specificities of 50 lateral flow– or laboratory-based RATs and 3 strand invasion–based amplification (SIBA)-RT-PCR tests from 30 manufacturers to RT-PCR testing of samples obtained from the deep oropharynx. In addition, the study will compare sensitivities and specificities of the included RATs as well as RT-PCR on clinical samples obtained from the deep oropharynx, the anterior nasal cavity, saliva, the deep nasopharynx, and expired air to RT-PCR on deep oropharyngeal samples. MethodsIn the prospective part of the study, 200 individuals found SARS-CoV-2 positive and 200 individuals found SARS-CoV-2 negative by routine RT-PCR testing will be retested with each RAT, applying RT-PCR as the reference method. In the retrospective part of the study, 304 deep oropharyngeal cavity swabs divided into 4 groups based on RT-PCR quantification cycle (Cq) levels will be tested with each RAT. ResultsThe results will be reported in several papers with different aims. The first paper will report retrospective (analytical sensitivity, overall and stratified into different Cq range groups) and prospective (clinical sensitivity) data for RATs, with RT-PCR as the reference method. The second paper will report results for RAT based on anatomical sampling location. The third paper will compare different anatomical sampling locations by RT-PCR testing. The fourth paper will focus on RATs that rely on central laboratory testing. Tests from 4 different manufacturers will be compared for analytical performance data on retrospective deep oropharyngeal swab samples. The fifth paper will report the results of 4 RATs applied both as professional use and as self-tests. The last paper will report the results from 2 breath tests in the study. A comparison of sensitivity and specificity between RATs will be conducted using the McNemar test for paired samples and the chi-squared test for unpaired samples. Comparison of the positive predictive value (PPV) and negative predictive value (NPV) between RATs will be performed by the bootstrap test, and 95% CIs for sensitivity, specificity, PPV, and NPV will be calculated as bootstrap CIs. ConclusionsThe study will compare the sensitivities of a large number of RATs for SARS-CoV-2 to with those of RT-PCR and will address whether lateral flow–based RATs differ significantly from laboratory-based RATs. The anatomical test locations for both RATs and RT-PCR will also be compared. Trial RegistrationClinicalTrials.gov NCT04913116; https://clinicaltrials.gov/ct2/show/NCT04913116 International Registered Report Identifier (IRRID)DERR1-10.2196/3570

    Highly multiplexed targeted sequencing strategy for infectious disease surveillance

    No full text
    Abstract Background Global efforts to characterize diseases of poverty are hampered by lack of affordable and comprehensive detection platforms, resulting in suboptimal allocation of health care resources and inefficient disease control. Next generation sequencing (NGS) can provide accurate data and high throughput. However, shotgun and metagenome-based NGS approaches are limited by low concentrations of microbial DNA in clinical samples, requirements for tailored sample and library preparations plus extensive bioinformatics analysis. Here, we adapted molecular inversion probes (MIPs) as a cost-effective target enrichment approach to characterize microbial infections from blood samples using short-read sequencing. We designed a probe panel targeting 2 bacterial genera, 21 bacterial and 6 fungi species and 7 antimicrobial resistance markers (AMRs). Results Our approach proved to be highly specific to detect down to 1 in a 1000 pathogen DNA targets contained in host DNA. Additionally, we were able to accurately survey pathogens and AMRs in 20 out of 24 samples previously profiled with routine blood culture for sepsis. Conclusions Overall, our targeted assay identifies microbial pathogens and AMRs with high specificity at high throughput, without the need for extensive sample preparation or bioinformatics analysis, simplifying its application for characterization and surveillance of infectious diseases in medium- to low- resource settings

    Multicenter evaluation of the new QIAstat Gastrointestinal Panel for the rapid syndromic testing of acute gastroenteritis

    No full text
    In acute gastroenteritis (AGE), identification of the infectious agent is important for patient management. Since symptoms do not reliably identify the agent, microbiological diagnostics are important. Conventional methods lack sensitivity and often take days. Multiplex PCR panels offer fast and sensitive alternatives. Our aim was to assess the performance of the new QIAstat Gastrointestinal Panel (GIP) detecting 24 different gastroenteric pathogens from stool in Cary-Blair transport medium (Adenovirus F 40/41, Astrovirus, Norovirus GI/GII, Rotavirus A, Sapovirus, Campylobacter spp., Clostridium difficile, Plesiomonas shigelloides, Salmonella spp., Vibrio cholera, Vibrio parahaemolyticus, Vibrio vulnificus, Yersinia enterocolitica, enteroaggregative Escherichia coli, enteropathogenic E. coli, enterotoxigenic E. coli, Shiga-toxin-producing E. coli (stx1 and stx2) (including specific detection of E. coli O157), Shigella spp./enteroinvasive E. coli, Cryptosporidium spp., Cyclospora cayetanensis, Entamoeba histolytica and Giardia lamblia). We tested both prospective (n = 163) and retrospective (n = 222) stool samples sent for routine diagnostics by the QIAstat GIP comparing it to the FDA-approved BioFire FilmArray GIP. Seegene Allplex GIP was used for discrepancy testing. After discrepancy testing, QIAstat GIP detected 447 of 455 pathogens (98.2%, 95% confidence interval (CI) 96.6-99.1%). There were eight false positive detections. Multiple pathogens were detected in 32.5% of positive samples. The QIAstat GIP detected a large range of AGE pathogens with a high sensitivity. It offers an easy-to-use system for GI pathogen detection in stool within 70 min. An advantage of the QIAstat is the availability of cycle threshold (CT) values to aid in interpretation of results
    corecore