53 research outputs found

    BeitrÀge zur röntgenmikroanalytischen Charakterisierung anorganisch-nichtmetallischer Werkstoffe auf der Basis niederenergetischer M-Strahlung

    Get PDF
    Aufgrund unikaler Eigenschaften haben die Seltenerdelemente (SEE) Bedeutung in vielen Bereichen der modernen Technik. So stellt im IPHT Jena die Entwicklung aktiver optischer Fasern auf der Grundlage SEE-haltigen Quarzglasmaterials einen Schwerpunkt dar. Um die Materialentwicklung via Elektronenstrahl-Mikroanalyse adÀquat begleiten zu können, sind genaue Atomdaten eine Grundvoraussetzung. Recherchen sowie praktische Erfahrungen zeigen jedoch, dass die Kenntnis der charakteristischen Röntgenstrahlung noch immer unvollstÀndig ist, was besonders im Falle der M-Strahlung der SEE zutrifft. Als Folge kann es, vor allem bei der Anregung mit niederenergetischen Elektronen, zu falschen Analysenergebnissen kommen. Die vorliegende Arbeit befasst sich mit der detaillierten Untersuchung der M-Spektren der Elemente Z=55 bis Z=71 mittels energie- und wellenlÀngendispersiver Spektrometrie. Neues Datenmaterial wird prÀsentiert und dessen praktische Bedeutung anhand ausgewaehlter Beispiele der Analyse anorganisch-nichtmetallischer Werkstoffe aufgezeigt

    Biomimic Vein-Like Transparent Conducting Electrodes with Low Sheet Resistance and Metal Consumption

    Get PDF
    Abstract: In this contribution, inspired by the excellent resource management and material transport function of leaf veins, the electrical transport function of metallized leaf veins is mimicked from the material transport function of the vein networks. By electroless copper plating on real leaf vein networks with copper thickness of only several hundred nanometre up to several micrometre, certain leaf veins can be converted to transparent conductive electrodes with an ultralow sheet resistance 100 times lower than that of state-of-the-art indium tin oxide thin films, combined with a broadband optical transmission of above 80% in the UV–VIS–IR range. Additionally, the resource efficiency of the vein-like electrode is characterized by the small amount of material needed to build up the networks and the low copper consumption during metallization. In particular, the high current density transport capability of the electrode of > 6000 A cm−2 was demonstrated. These superior properties of the vein-like structures inspire the design of high-performance transparent conductive electrodes without using critical materials and may significantly reduce the Ag consumption down to < 10% of the current level for mass production of solar cells and will contribute greatly to the electrode for high power density concentrator solar cells, high power density Li-ion batteries, and supercapacitors.[Figure not available: see fulltext.]. © 2020, © 2020, The Author(s)

    Modification of Surface Bond Au Nanospheres by Chemically and Plasmonically Induced Pd Deposition

    Get PDF
    In this work we investigated methods of modifying gold nanospheres bound to a silicon surface by depositing palladium onto the surfaces of single nanoparticles. Bimetallic Au-Pd nanoparticles can thus be gained for use in catalysis or sensor technology. For Pd deposition, two methods were chosen. The first method was the reduction of palladium acetate by ascorbic acid, in which the amounts of palladium acetate and ascorbic acid were varied. In the second method we utilized light-induced metal deposition by making use of the plasmonic effect. Through this method, the surface bond nanoparticles were irradiated with light of wavelengths capable of inducing plasmon resonance. The generation of hot electrons on the particle surface then reduced the palladium acetate in the vicinity of the gold nanoparticle, resulting in palladium-covered gold nanospheres. In our studies we demonstrated the effect of both enhancement methods by monitoring the particle heights over enhancement time by atomic force microscopy (AFM), and investigated the influence of ascorbic acid/Pd acetate concentration as well as the impact of the irradiated wavelengths on the enhancement effect. It could thus be proven that both methods were valid for obtaining a deposition of Pd on the surface of the gold nanoparticles. Deposition of Pd on the gold particles using the light-assisted method could be observed, indicating the impact of the plasmonic effect and hot electron for Pd acetate reduction on the gold particle surface. In the case of the reduction method with ascorbic acid, in addition to Pd deposition on the gold nanoparticle surface, larger pure Pd particles and extended clusters were also generated. The reduction with ascorbic acid however led to a considerably thicker Pd layer of up to 54 nm in comparison to up to 11 nm for the light-induced metal deposition with light resonant to the particle absorption wavelength. Likewise, it could be demonstrated that light of non-resonant wavelengths was not capable of initiating Pd deposition, since a growth of only 1.6 nm (maximum) was observed for the Pd layer

    Application of Thermal Response Measurements to Investigate Enhanced Water Adsorption Kinetics in Ball-Milled C2N-Type Materials

    Get PDF
    Sorption-based water capture is an attractive solution to provide potable water in arid regions. Heteroatom-decorated microporous carbons with hydrophilic character are promising candidates for water adsorption at low humidity, but the strong affinity between the polar carbon pore walls and water molecules can hinder the water transport within the narrow pore system. To reduce the limitations of mass transfer, C2N-type carbon materials obtained from the thermal condensation of a molecular hexaazatriphenylene-hexacarbonitrile (HAT-CN) precursor were treated mechanochemically via ball milling. Scanning electron microscopy as well as static light scattering reveal that large pristine C2N-type particles were split up to a smaller size after ball milling, thus increasing the pore accessibility which consequently leads to faster occupation of the water vapor adsorption sites. The major aim of this work is to demonstrate the applicability of thermal response measurements to track these enhanced kinetics of water adsorption. The adsorption rate constant of a C2N material condensed at 700 °C remarkably increased from 0.026 s−1 to 0.036 s−1 upon ball milling, while maintaining remarkably high water vapor capacity. This work confirms the advantages of small particle sizes in ultramicroporous materials on their vapor adsorption kinetics. It is demonstrated that thermal response measurements are a valuable and time-saving method to investigate water adsorption kinetics, capacities, and cycling stability
    • 

    corecore