125 research outputs found

    External tufted cells drive the output of olfactory bulb glomeruli.

    Get PDF
    Odors synchronize the activity of olfactory bulb mitral cells that project to the same glomerulus. In vitro, a slow rhythmic excitation intrinsic to the glomerular network persists, even in the absence of afferent input. We show here that a subpopulation of juxtaglomerular cells, external tufted (ET) cells, may trigger this rhythmic activity. We used paired whole-cell recording and Ca(2+) imaging in bulb slices from wild-type and transgenic mice expressing the fluorescent Ca(2+) indicator protein GCaMP-2. Slow, periodic population bursts in mitral cells were synchronized with spontaneous discharges in ET cells. Moreover, activation of a single ET cell was sufficient to evoke population bursts in mitral cells within the same glomerulus. Stimulation of the olfactory nerve induced similar population bursts and activated ET cells at a lower threshold than mitral cells, suggesting that ET cells mediate feedforward excitation of mitral cells. We propose that ET cells act as essential drivers of glomerular output to the olfactory cortex.journal articleresearch support, non-u.s. gov't2009 Feb 18importe

    Monosynaptic and polysynaptic feed-forward inputs to mitral cells from olfactory sensory neurons.

    Get PDF
    Olfactory sensory neurons (OSNs) expressing the same odorant receptor converge in specific glomeruli where they transmit olfactory information to mitral cells. Surprisingly, synaptic mechanisms underlying mitral cell activation are still controversial. Using patch-clamp recordings in mouse olfactory bulb slices, we demonstrate that stimulation of OSNs produces a biphasic postsynaptic excitatory response in mitral cells. The response was initiated by a fast and graded monosynaptic input from OSNs and followed by a slower component of feedforward excitation, involving dendro-dendritic interactions between external tufted, tufted and other mitral cells. The mitral cell response occasionally lacked the fast OSN input when few afferent fibers were stimulated. We also show that OSN stimulation triggers a strong and slow feedforward inhibition that shapes the feedforward excitation but leaves unaffected the monosynaptic component. These results confirm the existence of direct OSN to mitral cells synapses but also emphasize the prominence of intraglomerular feedforward pathways in the mitral cell response.journal articleresearch support, non-u.s. gov't2011 Jun 15importe

    Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb.

    Get PDF
    The activity of mitral and tufted cells, the principal neurons of the olfactory bulb, is modulated by several classes of interneurons. Among them, diverse periglomerular (PG) cell types interact with the apical dendrites of mitral and tufted cells inside glomeruli at the first stage of olfactory processing. We used paired recording in olfactory bulb slices and two-photon targeted patch-clamp recording in vivo to characterize the properties and connections of a genetically identified population of PG cells expressing enhanced yellow fluorescent protein (EYFP) under the control of the Kv3.1 potassium channel promoter. Kv3.1-EYFP(+) PG cells are axonless and monoglomerular neurons that constitute ∼30% of all PG cells and include calbindin-expressing neurons. They respond to an olfactory nerve stimulation with a short barrage of excitatory inputs mediated by mitral, tufted, and external tufted cells, and, in turn, they indiscriminately release GABA onto principal neurons. They are activated by even the weakest olfactory nerve input or by the discharge of a single principal neuron in slices and at each respiration cycle in anesthetized mice. They participate in a fast-onset intraglomerular lateral inhibition between principal neurons from the same glomerulus, a circuit that reduces the firing rate and promotes spike timing variability in mitral cells. Recordings in other PG cell subtypes suggest that this pathway predominates in generating glomerular inhibition. Intraglomerular lateral inhibition may play a key role in olfactory processing by reducing the similarity of principal cells discharge in response to the same incoming input.journal articleresearch support, non-u.s. gov't2015 Mar 11importe

    Status of evaluated data files for 238U in the resonance region

    Get PDF
    Experimental data and evaluated data libraries related to neutron induced reaction cross sections for 238U in the resonance region are reviewed. Based on this review a set of test files is produced to study systematic effects such as the impact of the upper boundary of the resolved resonance region (RRR) and the representation of the infinite diluted capture and in-elastic cross section in the unresolved resonance region (URR). A set of Benchmark experiments was selected and used to verify the test files. Based on these studies recommendations to perform a new evaluation have been defined. This report has been prepared in support to the CIELO (Collaborative International Evaluated Library Organisation) project. The objective of this project is the creation of a world-wide recognised nuclear data file with a focus on six nuclides, i.e. 1H, 16O, 56Fe, 235U, 238U and 239Pu. Within the CIELO project, the Joint Research Centre (JRC) at Geel (B) is in charge of the production of an evaluated cross section data file for neutron induced reaction of 238U in the resonance region.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    Reappraisal of Vipera aspis Venom Neurotoxicity

    Get PDF
    BACKGROUND: The variation of venom composition with geography is an important aspect of intraspecific variability in the Vipera genus, although causes of this variability remain unclear. The diversity of snake venom is important both for our understanding of venomous snake evolution and for the preparation of relevant antivenoms to treat envenomations. A geographic intraspecific variation in snake venom composition was recently reported for Vipera aspis aspis venom in France. Since 1992, cases of human envenomation after Vipera aspis aspis bites in south-east France involving unexpected neurological signs were regularly reported. The presence of genes encoding PLA(2) neurotoxins in the Vaa snake genome led us to investigate any neurological symptom associated with snake bites in other regions of France and in neighboring countries. In parallel, we used several approaches to characterize the venom PLA(2) composition of the snakes captured in the same areas. [br/] METHODOLOGY/PRINCIPAL FINDINGS: We conducted an epidemiological survey of snake bites in various regions of France. In parallel, we carried out the analysis of the genes and the transcripts encoding venom PLA(2)s. We used SELDI technology to study the diversity of PLA(2) in various venom samples. Neurological signs (mainly cranial nerve disturbances) were reported after snake bites in three regions of France: Languedoc-Roussillon, Midi-Pyrénées and Provence-Alpes-Côte d'Azur. Genomes of Vipera aspis snakes from south-east France were shown to contain ammodytoxin isoforms never described in the genome of Vipera aspis from other French regions. Surprisingly, transcripts encoding venom neurotoxic PLA(2)s were found in snakes of Massif Central region. Accordingly, SELDI analysis of PLA(2) venom composition confirmed the existence of population of neurotoxic Vipera aspis snakes in the west part of the Massif Central mountains. [br/] CONCLUSIONS/SIGNIFICANCE: The association of epidemiological studies to genetic, biochemical and immunochemical analyses of snake venoms allowed a good evaluation of the potential neurotoxicity of snake bites. A correlation was found between the expression of neurological symptoms in humans and the intensity of the cross-reaction of venoms with anti-ammodytoxin antibodies, which is correlated with the level of neurotoxin (vaspin and/or ammodytoxin) expression in the venom. The origin of the two recently identified neurotoxic snake populations is discussed according to venom PLA(2) genome and transcriptome data

    Determinants of serum zinc in a random population sample of four Belgian towns with different degrees of environmental exposure to cadmium

    Get PDF
    This report investigated the distribution of serum zinc and the factors determining serum zinc concentration in a large random population sample. The 1977 participants (959 men and 1018 women), 20–80 years old, constituted a stratified random sample of the population of four Belgian districts, representing two areas with low and two with high environmental exposure to cadmium. For each exposure level, a rural and an urban area were selected. The serum concentration of zinc, frequently used as an index for zinc status in human subjects, was higher in men (13.1 μmole/L, range 6.5–23.0 μmole/L) than in women (12.6 μmole/L, range 6.3–23.2 μmole/L). In men, 20% of the variance of serum zinc was explained by age (linear and squared term, R = 0.29), diurnal variation (r = 0.29), and total cholesterol (r = 0.16). After adjustment for these covariates, a negative relationship was observed between serum zinc and both blood (r = −0.10) and urinary cadmium (r = −0.14). In women, 11% of the variance could be explained by age (linear and squared term, R = 0.15), diurnal variation in serum zinc (r = 0.27), creatinine clearance (r = −0.11), log γ-glutamyltranspeptidase (r = 0.08), cholesterol (r = 0.07), contraceptive pill intake (r = −0.07), and log serum ferritin (r = 0.06). Before and after adjustment for significant covariates, serum zinc was, on average, lowest in the two districts where the body burden of cadmium, as assessed by urinary cadmium excretion, was highest. These results were not altered when subjects exposed to heavy metals at work were excluded from analysis

    The Source of Spontaneous Activity in the Main Olfactory Bulb of the Rat

    Get PDF
    In vivo, most neurons in the main olfactory bulb exhibit robust spontaneous activity. This paper tests the hypothesis that spontaneous activity in olfactory receptor neurons drives much of the spontaneous activity in mitral and tufted cells via excitatory synapses.Single units were recorded in vivo from the main olfactory bulb of a rat before, during, and after application of lidocaine to the olfactory nerve. The effect of lidocaine on the conduction of action potentials from the olfactory epithelium to the olfactory bulb was assessed by electrically stimulating the olfactory nerve rostral to the application site and monitoring the field potential evoked in the bulb.Lidocaine caused a significant decrease in the amplitude of the olfactory nerve evoked field potential that was recorded in the olfactory bulb. By contrast, the lidocaine block did not significantly alter the spontaneous activity of single units in the bulb, nor did it alter the field potential evoked by electrical stimulation of the lateral olfactory tract. Lidocaine block also did not change the temporal patters of action potential or their synchronization with respiration.Spontaneous activity in neurons of the main olfactory bulb is not driven mainly by activity in olfactory receptor neurons despite the extensive convergence onto mitral and tufted cells. These results suggest that spontaneous activity of mitral and tufted is either an inherent property of these cells or is driven by centrifugal inputs to the bulb
    corecore