19 research outputs found

    A Contribution to the Knowledge of the Torymidae (Hymenoptera, Chalcidoidea) from South-Western Iran

    Get PDF
    New data on distribution of 11 torymid wasp species (Hymenoptera, Chalcidoidea, Torymidae) from Fars province in South-Western Iran are provided. The genus Eridontomerus Crawford, 1907 and four species Adontomerus nesterovi Zerova, 1985, E. biroi Ruschka, 1923, Monodontomerus rugulosus Thomson, 1876 and Podagrion gibbum Bernard, 1938 are new records for Iran. Available data for each species and brief notes on host(s) and geographical distribution are also given

    Genetic analysis reveals conspecificity of two nominal species of Anaphes fairyflies (Hymenoptera: Mymaridae), egg parasitoids of Oulema leaf beetle (Coleoptera: Chrysomelidae) pests of cereal crops in Europe and of rice in East Asia.

    No full text
    Anaphes (Anaphes) flavipes (Foerster), a fairyfly (Hymenoptera: Mymaridae) native of Europe, is an economically important egg parasitoid for the natural control of Oulema spp. leaf beetle (Coleoptera: Chrysomelidae) pests of cereal crops such as barley, oats, rye, and wheat in Europe, and for the classical biological control of the invasive Oulema melanopus (L.) in North America. A morphologically very similar Anaphes (Anaphes) nipponicus Kuwayama, known from mainland China, Japan, Republic of Korea, Far East of Russia and Taiwan, is an egg parasitoid of Oulema oryzae (Kuwayama), a pest of rice mainly in temperate parts of East Asia. The nuclear 28S-D2 and ITS2 and the mitochondrial COI genes were used as markers to compare specimens of A. (Anaphes) flavipes reared from eggs of an Oulema sp. on barley in Germany with those of A. (Anaphes) nipponicus reared from eggs of O. oryzae on rice in Honshu Island, Japan. Because the resulting sequences are practically identical, within an expected intraspecific genetic variability, conspecificity of these two nominal species has been confirmed, and consequently A. (Anaphes) nipponicus Kuwayama, 1932, syn. n. is synonymized with A. (Anaphes) flavipes (Foerster, 1841). Taxonomic notes and illustrations are provided for the specimens of both sexes of A. (Anaphes) flavipes from Japan to facilitate their recognition

    Data from: A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera)

    No full text
    Chalcidoidea (Hymenoptera) is extremely diverse with an estimated 500 000 species. We present the first phylogenetic analysis of the superfamily based on both morphological and molecular data. A web-based, systematics workbench mx was used to score 945 character states illustrated by 648 figures for 233 morphological characters for a total of 66 645 observations for 300 taxa. The matrix covers 22 chalcidoid families recognized herein and includes 268 genera within 78 of 83 subfamilies. Morphological data were analysed alone and in combination with molecular data from ribosomal 18S (2105 bp) and 28S D2–D5 expansion regions (1812 bp). Analyses were analysed alone and in combined datasets using implied-weights parsimony and likelihood. Proposed changes in higher classification resulting from the analyses include: (i) recognition of Eriaporidae, revised status; (ii) recognition of Cynipencyrtidae, revised status; (iii) recognition of Azotidae, revised status; (iv) inclusion of Sycophaginae in Agaonidae, revised status; (v) reclassification of Aphelinidae to include Aphelininae, Calesinae, Coccophaginae, Eretmocerinae and Eriaphytinae; (vi) inclusion of Cratominae and Panstenoninae within Pteromalinae (Pteromalidae), new synonymy; (vii) inclusion of Epichrysomallinae in Pteromalidae, revised status. At a higher level, Chalcidoidea was monophyletic, with Mymaridae the sister group of Rotoitidae plus the remaining Chalcidoidea. A eulophid lineage was recovered that included Aphelinidae, Azotidae, Eulophidae, Signiphoridae, Tetracampidae and Trichogrammatidae. Eucharitidae and Perilampidae were monophyletic if Eutrichosomatinae (Pteromalidae) was included, and Eupelmidae was monophyletic if Oodera (Pteromalidae: Cleonyminae) was included. Likelihood recovered a clade of Eupelmidae + (Tanaostigmatidae + (Cynipencyrtus + Encyrtidae). Support for other lineages and their impact on the classification of Chalcidoidea is discussed. Several life-history traits are mapped onto the new phylogeny
    corecore