122 research outputs found

    Linkage disequilibrium compared between five populations of domestic sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The success of genome-wide scans depends on the strength and magnitude of linkage disequilibrium (LD) present within the populations under investigation. High density SNP arrays are currently in development for the sheep genome, however little is known about the behaviour of LD in this livestock species. This study examined the behaviour of LD within five sheep populations using two LD metrics, D' and x<sup>2'</sup>. Four economically important Australian sheep flocks, three pure breeds (White Faced Suffolk, Poll Dorset, Merino) and a crossbred population (Merino × Border Leicester), along with an inbred Australian Merino museum flock were analysed.</p> <p>Results</p> <p>Short range LD (0 – 5 cM) was observed in all five populations, however the persistence with increasing distance and magnitude of LD varied considerably between populations. Average LD (x<sup>2'</sup>) for markers spaced up to 20 cM exceeded the non-syntenic average within the White Faced Suffolk, Poll Dorset and Macarthur Merino. LD decayed faster within the Merino and Merino × Border Leicester, with LD below or consistent with observed background levels. Using marker-marker LD as a guide to the behaviour of marker-QTL LD, estimates of minimum marker spacing were made. For a 95% probability of detecting QTL, a microsatellite marker would be required every 0.1 – 2.5 centimorgans, depending on the population used.</p> <p>Conclusion</p> <p>Sheep populations were selected which were inbred (Macarthur Merino), highly heterogeneous (Merino) or intermediate between these two extremes. This facilitated analysis and comparison of LD (x<sup>2'</sup>) between populations. The strength and magnitude of LD was found to differ markedly between breeds and aligned closely with both observed levels of genetic diversity and expectations based on breed history. This confirmed that breed specific information is likely to be important for genome wide selection and during the design of successful genome scans where tens of thousands of markers will be required.</p

    Changed Patterns of Genomic Variation Following Recent Domestication: Selection Sweeps in Farmed Atlantic Salmon

    Get PDF
    The introduction of wild Atlantic salmon into captivity, and their subsequent artificial selection for production traits, has caused phenotypic differences between domesticated fish and their wild counterparts. Identification of regions of the genome underling these changes offers the promise of characterizing the early biological consequences of domestication. In the current study, we sequenced a population of farmed European Atlantic salmon and compared the observed patterns of SNP variation to those found in conspecific wild populations. This identified 139 genomic regions that contained significantly elevated SNP homozygosity in farmed fish when compared to their wild counterparts. The most extreme was adjacent to versican, a gene involved in control of neural crest cell migration. To control for false positive signals, a second and independent dataset of farmed and wild European Atlantic salmon was assessed using the same methodology. A total of 81 outlier regions detected in the first dataset showed significantly reduced homozygosity within the second one, strongly suggesting the genomic regions identified are enriched for true selection sweeps. Examination of the associated genes identified a number previously characterized as targets of selection in other domestic species and that have roles in development, behavior and olfactory system. These include arcvf, sema6, errb4, id2-like, and 6n1-like genes. Finally, we searched for evidence of parallel sweeps using a farmed population of North American origin. This failed to detect a convincing overlap to the putative sweeps present in European populations, suggesting the factors that drive patterns of variation under domestication and early artificial selection were largely independent. This is the first analysis on domestication of aquaculture species exploiting whole-genome sequence data and resulted in the identification of sweeps common to multiple independent populations of farmed European Atlantic salmon

    Genomic signatures of adaptive introgression from European mouflon into domestic sheep

    Get PDF
    Mouflon (Ovis aries musimon) became extinct from mainland Europe after the Neolithic, but remnant populations from the Mediterranean islands of Corsica and Sardinia have been used for reintroductions across Europe since the 19th-century. Mouflon x sheep hybrids are larger-bodied than mouflon, potentially showing increased male reproductive success, but little is known about genomic levels of admixture, or about the adaptive significance of introgression between resident mouflon and local sheep breeds. Here we analysed Ovine medium-density SNP array genotypes of 92 mouflon from six geographic regions, along with data from 330 individuals of 16 domestic sheep breeds. We found lower levels of genetic diversity in mouflon than in domestic sheep, consistent with past bottlenecks in mouflon. Introgression signals were bidirectional and affected most mouflon and sheep populations, being strongest in one Sardinian mouflon population. Developing and using a novel approach to identify chromosomal regions with consistent introgression signals, we infer adaptive introgression from mouflon to domestic sheep related to immunity mechanisms, but not in the opposite direction. Further, we infer that Soay and Sarda sheep carry introgressed mouflon alleles involved in bitter taste perception and/or innate immunity. Our results illustrate the potential for adaptive introgression even among recently diverged populations

    Linkage Disequilibrium Mapping in Domestic Dog Breeds Narrows the Progressive Rod-Cone Degeneration Interval and Identifies Ancestral Disease-Transmitting Chromosome

    Get PDF
    Canine progressive rod–cone degeneration (prcd) is a retinal disease previously mapped to a broad, gene-rich centromeric region of canine chromosome 9. As allelic disorders are present in multiple breeds, we used linkage disequilibrium (LD) to narrow the ∼6.4-Mb interval candidate region. Multiple dog breeds, each representing genetically isolated populations, were typed for SNPs and other polymorphisms identified from BACs. The candidate region was initially localized to a 1.5-Mb zero recombination interval between growth factor receptor-bound protein 2 (GRB2) and SEC14-like 1 (SEC14L). A fine-scale haplotype of the region was developed, which reduced the LD interval to 106 kb and identified a conserved haplotype of 98 polymorphisms present in all prcd-affected chromosomes from 14 different dog breeds. The findings strongly suggest that a common ancestor transmitted the prcd disease allele to many of the modern dog breeds and demonstrate the power of the LD approach in the canine model

    Cloning and Characterization of the Canine Photoreceptor Specific Cone-Rod Homeobox (CRX) Gene and Evaluation as a Candidate for Early Onset Photoreceptor Diseases in the Dog

    Get PDF
    Purpose: The cone-rod homeobox protein (CRX) is a member of the homeodomain-containing protein family expressed in the retinal photoreceptors and pinealocytes; it is involved in the regulation of the coordinate expression of multiple photoreceptor specific genes during retinal development. Mutations in the CRX gene are causally associated with retinal degeneration phenotypes in man. To clone the full length cDNA, characterize the genomic organization of canine CRX, map the gene in a radiation hybrid (RH) panel, and evaluate it as a candidate for canine inherited retinal degenerations. Methods: cDNA representational difference analysis (RDA) was done using normal and cone degeneration (cd) affected retinas. Exonic primers designed from consensus sequences of mammalian CRX cDNA were used to amplify and sequence dog genomic DNA. Canine specific primers were used for RH mapping of CRX on the RH3000 cell line. Linkage, sequencing and/or mapping the disease locus was used to evaluate CRX as a disease associated candidate gene. Results: The gene comprises three exons and two introns and codes for a transcript with a 900 bp open reading frame (ORF). In agreement with human map data, RH mapping placed canine CRX on the proximal end of CFA1, in a region of synteny with HSA19q13-q13.3. Based on RH mapping, meiotic linkage or sequencing data, we excluded CRX as the cause of canine early onset photoreceptor degenerations affecting Alaskan malamutes (cd), collies (rod-cone dysplasia 2, rcd2), American Staffordshire terriers, and Tibetan terriers. Conclusions: Canine CRX has a high level of nucleotide and amino acid sequence identity with ortholgous sequences reported for other species. The gene is excluded from causal association with 4 early onset photoreceptor diseases affecting cones (cd) or rods and cones (rcd2, PRA in American Staffordshire terriers, and Tibetan terriers)

    A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    Get PDF
    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability

    Reference genome of wild goat (<i>capra aegagrus</i>) and sequencing of goat breeds provide insight into genic basis of goat domestication

    Get PDF
    BACKGROUND: Domestic goats (Capra hircus) have been selected to play an essential role in agricultural production systems, since being domesticated from their wild progenitor, bezoar (Capra aegagrus). A detailed understanding of the genetic consequences imparted by the domestication process remains a key goal of evolutionary genomics. RESULTS: We constructed the reference genome of bezoar and sequenced representative breeds of domestic goats to search for genomic changes that likely have accompanied goat domestication and breed formation. Thirteen copy number variation genes associated with coat color were identified in domestic goats, among which ASIP gene duplication contributes to the generation of light coat-color phenotype in domestic goats. Analysis of rapidly evolving genes identified genic changes underlying behavior-related traits, immune response and production-related traits. CONCLUSION: Based on the comparison studies of copy number variation genes and rapidly evolving genes between wild and domestic goat, our findings and methodology shed light on the genetic mechanism of animal domestication and will facilitate future goat breeding. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1606-1) contains supplementary material, which is available to authorized users

    Evidence for multiple alleles effecting muscling and fatness at the Ovine GDF8 locus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current investigation surveyed genetic polymorphism at the ovine <it>GDF8 </it>locus and determined its contribution to variation in muscling and fatness in sheep.</p> <p>Results</p> <p>Re-sequencing 2988 bp from a panel of 15 sires revealed a total of six SNP, none of which were located within exons of the gene. One of the identified SNP, <it>g+6723G>A</it>, is known to increase muscularity within the Belgian Texel. A genetic survey of 326 animals revealed that the mutation is near fixation within Australian Texels and present in additional breeds including White Suffolk, Poll Dorset and Lincoln. Using a resource population comprising 15 sires and 1191 half-sib progeny with genotypic data, the effect of this and other SNP was tested against a set of 50 traits describing growth, muscling, fatness, yield, meat and eating quality. The loss of function allele (<it>g+6723A</it>) showed significant effects on slaughter measurements of muscling and fatness. No effect was detected on objectively assessed meat quality however evidence was found for an association between <it>g+6723G>A</it>, decreased intramuscular fat and reduced eating quality. Haplotype analysis using flanking microsatellites was performed to search for evidence of currently unidentified mutations which might affect production traits. Four haplotypes were identified that do not carry <it>g+6723A </it>but which showed significant associations with muscling and fatness.</p> <p>Conclusion</p> <p>The finding that <it>g+6723G>A </it>is present within Australian sheep facilitated an independent evaluation into its phenotypic consequence. Testing was conducted using a separate genetic background and animals raised in different environments to the Belgian Texel in which it was first identified. The observation that the direction and size of effects for <it>g+6723A </it>is approximately consistent represented a robust validation of the effects of the mutation. Based on observed allele frequencies within breeds, selection for <it>g+6723A </it>will have the largest impact within the White Suffolk. <it>GDF8 </it>may harbour additional mutations which serve to influence economically important traits in sheep.</p
    corecore