20 research outputs found

    SnO<sub>2</sub> treatment reduces glycoprotein mediated cell-to-cell fusion.

    No full text
    <p>Two populations of cells were generated to determine the effect of SnO<sub>2</sub> treatment on cell fusion. Effector cells were transfected with plasmids gB, gD, gH, gL and T7. Target cells were transfected with gD, receptor Nectin-1 and a luciferase expressing plasmid under the control of a T7 promoter. Target and Effector cells were mixed together at a 1∶1 ratio. Luciferase activity was determined in the presence of firefly luciferase, allowing the measurement of relative light units (RLU). CHO-K1 cells were either mock treated or treated with SnO<sub>2</sub>. As a negative control, effector cells lacking gB were mixed with the target cells.</p

    SnO<sub>2</sub> Inhibits cell-to-cell spread and plaque formation in HCE cells.

    No full text
    <p>A) Confluent monolayers of HCE cells were infected with HSV-1 (KOS) K26RFP and viral replication and spread were imaged 72 hours post infection. The effect of SnO<sub>2</sub> on viral spread was assayed through the measurement of infected cell clusters and the intensity of RFP emission. B) In conjugation with the infectious spread assay, a plaque assay was performed to evaluate the SnO<sub>2</sub> effect on viral transmission. UV treated SnO<sub>2</sub> was added to cells prior to a 2 hour incubation with HSV-1(KOS). Following the 2-hour absorption phase virus inoculum was removed and cells were overlaid with methylcellulose. 3-days post infection cells were fixed with methanol at room temperature for 20 minutes and strained with crystal violet. Images were taken with a Zeiss Axiovert 200 microscope using a 10× objective.</p

    Scanning electron microscopy results of SnO<sub>2</sub> nanowires synthesized by flame transport approach.

    No full text
    <p>A)–C): SEM images of SnO<sub>2</sub> nanowires in increasing order of magnifications. D) Energy dispersive X-ray absorption (EDAX) spectrum showing the purity of SnO<sub>2</sub> nanowires. The inset E) in D) is the digital camera image demonstrating the wire type fluffy structures of tin oxide.</p

    SnO<sub>2</sub> cytotoxicity determination.

    No full text
    <p>To determine the effect of SnO<sub>2</sub> nanowires on cell viability a cytotoxicity assay was performed. HCE were treated for 24 hours in the presence of SnO<sub>2</sub>. Cell viability was evaluated by a chromogenic kit (CellTiter Aqueous96; Promega, Madison, WI, USA) and colorimetric detections were performed using a mircroplate ELISA reader (Spectra Max 190). Results are expressed as 100% wild type (WT) viability where they represent the percent corrected absorbance after subtracting the background absorbance relative to untreated cells (0 µg/ml).</p

    SnO<sub>2</sub> inhibits HSV-1 entry into HCE cells.

    No full text
    <p>HCE cells were mock treated or treated with SnO<sub>2</sub> and exposed to HSV-1 at an MOI of 10 for 6 hours. A) After 6 hours of infection cells were washed, permeabilized and incubated with ONPG substrate for quantification of β-galactosidase activity from the viral genome. A dosage dependent decrease in entry was noted in cells as minimal entry occurred. B) X-gal staining of HCE cells. HCE cells grown in a 6-well plated were pretreated with SnO<sub>2</sub> before being challenged with HSV-1 for 6 hours. Cells were washed with PBS, fixed, permeabilized and incubated with X-gal, yielding blue cells. Infected cells were imaged at 10× objective using Zeiss Axiovert microscope. C) The average number of infected cells in SnO<sub>2</sub> treated cells is significantly lower than mock treated cells.</p

    Exploiting Herpes Simplex Virus Entry for Novel Therapeutics

    Get PDF
    Herpes Simplex virus (HSV) is associated with a variety of diseases such as genital herpes and numerous ocular diseases. At the global level, high prevalence of individuals who are seropositive for HSV, combined with its inconspicuous infection, remains a cause for major concern. At the molecular level, HSV entry into a host cell involves multiple steps, primarily the interaction of viral glycoproteins with various cell surface receptors, many of which have alternate substitutes. The molecular complexity of the virus to enter a cell is also enhanced by the existence of different modes of viral entry. The availability of many entry receptors, along with a variety of entry mechanisms, has resulted in a virus that is capable of infecting virtually all cell types. While HSV uses a wide repertoire of viral and host factors in establishing infection, current therapeutics aimed against the virus are not as diversified. In this particular review, we will focus on the initial entry of the virus into the cell, while highlighting potential novel therapeutics that can control this process. Virus entry is a decisive step and effective therapeutics can translate to less virus replication, reduced cell death, and detrimental symptoms

    Tin Oxide Nanowires Suppress Herpes Simplex Virus-1 Entry and Cell-to-Cell Membrane Fusion

    Get PDF
    The advent of nanotechnology has ushered in the use of modified nanoparticles as potential antiviral agents against diseases such as herpes simplex virus 1 and 2 (HSV-1) (HSV-2), human immunodeficiency virus (HIV), monkeypox virus, and hepatitis B virus. Here we describe the application of tin oxide (SnO(2)) nanowires as an effective treatment against HSV-1 infection. SnO(2) nanowires work as a carrier of negatively charged structures that compete with HSV-1 attachment to cell bound heparan sulfate (HS), therefore inhibiting entry and subsequent cell-to-cell spread. This promising new approach can be developed into a novel form of broad-spectrum antiviral therapy especially since HS has been shown to serve as a cellular co-receptor for a number of other viruses as well, including the respiratory syncytial virus, adeno-associated virus type 2, and human papilloma virus

    The Herschel-SPIRE Legacy Survey (HSLS): the scientific goals of a shallow and wide submillimeter imaging survey with SPIRE

    Get PDF
    A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs
    corecore