11 research outputs found

    Use of Innovative SPECT Techniques in the Presurgical Evaluation of Patients with Nonlesional Extratemporal Drug-Resistant Epilepsy

    No full text
    Up to 30% of patients with epilepsy may not respond to antiepileptic drugs. Patients with drug-resistant epilepsy (DRE) should undergo evaluation for seizure onset zone (SOZ) localization to consider surgical treatment. Cases of drug-resistant nonlesional extratemporal lobe epilepsy (ETLE) pose the biggest challenge in localizing the SOZ and require multiple noninvasive diagnostic investigations before planning the intracranial monitoring (ICM) or direct resection. Ictal Single Photon Emission Computed Tomography (i-SPECT) is a unique functional diagnostic tool that assesses the SOZ using the localized hyperperfusion that occurs early in the seizure. Subtraction ictal SPECT coregistered to MRI (SISCOM), statistical ictal SPECT coregistered to MRI (STATISCOM), and PET interictal subtracted ictal SPECT coregistered with MRI (PISCOM) are innovative SPECT methods for the determination of the SOZ. This article comprehensively reviews SPECT and sheds light on its vital role in the presurgical evaluation of the nonlesional extratemporal DRE

    Quantitative Sodium (<sup>23</sup>Na) MRI in Pediatric Gliomas: Initial Experience

    No full text
    Background: 23Na MRI correlates with tumor proliferation, and studies in pediatric patients are lacking. The purpose of the study: (1) to compare total sodium concentration (TSC) between pediatric glioma and non-neoplastic brain tissue using 23Na MRI; (2) compare tissue conspicuity of bound sodium concentration (BSC) using 23Na MRI dual echo relative to TSC imaging. Methods: TSC was measured in: (1) non-neoplastic brain tissues and (2) three types of manually segmented gliomas (diffuse intrinsic brainstem glioma (DIPG), recurrent supratentorial low-grade glioma (LGG), and high-grade glioma (HGG)). In a subset of patients, serial changes in both TSC and BSC (dual echo 23Na MRI) were assessed. Results: Twenty-six pediatric patients with gliomas (median age of 12.0 years, range 4.9–23.3 years) were scanned with 23Na MRI. DIPG treated with RT demonstrated higher TSC values than the uninvolved infratentorial tissues (p p p 23Na MRI suppressed the sodium signal within both CSF and necrotic foci. Conclusion: Quantitative 23Na MRI of pediatric gliomas demonstrates a range of values that are higher than non-neoplastic tissues. Dual echo 23Na MRI of BCS improves tissue conspicuity relative to TSC imaging

    The Use of Quantitative Imaging in Radiation Oncology: A Quantitative Imaging Network (QIN) Perspective

    Get PDF
    Modern radiation therapy is delivered with great precision, in part by relying on high-resolution multidimensional anatomic imaging to define targets in space and time. The development of quantitative imaging (QI) modalities capable of monitoring biologic parameters could provide deeper insight into tumor biology and facilitate more personalized clinical decision-making. The Quantitative Imaging Network (QIN) was established by the National Cancer Institute to advance and validate these QI modalities in the context of oncology clinical trials. In particular, the QIN has significant interest in the application of QI to widen the therapeutic window of radiation therapy. QI modalities have great promise in radiation oncology and will help address significant clinical needs, including finer prognostication, more specific target delineation, reduction of normal tissue toxicity, identification of radioresistant disease, and clearer interpretation of treatment response. Patient-specific QI is being incorporated into radiation treatment design in ways such as dose escalation and adaptive replanning, with the intent of improving outcomes while lessening treatment morbidities. This review discusses the current vision of the QIN, current areas of investigation, and how the QIN hopes to enhance the integration of QI into the practice of radiation oncology

    Learning to Feel Like a Lawyer: Law Teachers, Sessional Teaching and Emotional Labour in Legal Education

    No full text

    The nature and identification of quantitative trait loci: a community’s view

    No full text
    This white paper by eighty members of the Complex Trait Consortium presents a community’s view on the approaches and statistical analyses that are needed for the identification of genetic loci that determine quantitative traits. Quantitative trait loci (QTLs) can be identified in several ways, but is there a definitive test of whether a candidate locus actually corresponds to a specific QTL?
    corecore