106 research outputs found

    COTTON CULTIVAR, PLANTING, IRRIGATING, AND HARVESTING DECISIONS UNDER RISK

    Get PDF
    Producers in southwest Oklahoma lack adequate information about optimal planting decisions for cotton. This study uses a cotton growth simulation model to evaluate alternative cultivar, planting date, irrigation, and harvest choices. Effects of using information about soil moisture at reproduction and revenue loss at harvest in making cultivar and planting data decisions are evaluated. Using soil temperature information to plant at an early date produced high net revenue some years, but reduced mean net revenue and increased risk. Producers maximizing expected net revenue should plant a short-season cultivar in late May and use soil moisture information to schedule irrigation at reproduction.Crop Production/Industries,

    A Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein–Protein Interactions

    Full text link
    In vivo covalent chemical capture by using photoactivatable unnatural amino acids (UAAs) is a powerful tool for the identification of transient protein–protein interactions (PPIs) in their native environment. However, the isolation and characterization of the crosslinked complexes can be challenging. Here, we report the first in vivo incorporation of the bifunctional UAA BPKyne for the capture and direct labeling of crosslinked protein complexes through post‐crosslinking functionalization of a bioorthogonal alkyne handle. Using the prototypical yeast transcriptional activator Gal4, we demonstrate that BPKyne is incorporated at the same level as the commonly used photoactivatable UAA pBpa and effectively captures the Gal4–Gal80 transcriptional complex. Post‐crosslinking, the Gal4–Gal80 adduct was directly labeled by treatment of the alkyne handle with a biotin‐azide probe; this enabled facile isolation and visualization of the crosslinked adduct from whole‐cell lysate. This bifunctional amino acid extends the utility of the benzophenone crosslinker and expands our toolbox of chemical probes for mapping PPIs in their native cellular environment.Using the bifunctional unnatural amino acid, BPKyne, we have developed a strategy to capture and directly label transient protein–protein interactions (PPIs) in their native environment. Click chemical functionalization post‐crosslinking with a biotin–azide probe enabled the isolation of transcriptional protein complexes from yeast cells. This amino acid will expand the toolbox for the discovery of new PPIs in live cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135955/1/cbic201600578.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135955/2/cbic201600578_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135955/3/cbic201600578-sup-0001-misc_information.pd

    Covalent Chemical Cochaperones of the p300/CBP GACKIX Domain

    Full text link
    The GACKIX activator binding domain has been a compelling target for small‐molecule probe discovery because of the central role of activator–GACKIX complexes in diseases ranging from leukemia to memory disorders. Additionally, GACKIX is an ideal model to dissect the context‐dependent function of activator–coactivator complexes. However, the dynamic and transient protein–protein interactions (PPIs) formed by GACKIX are difficult targets for small molecules. An additional complication is that activator‐binding motifs, such as GACKIX, are found in multiple coactivators, making specificity difficult to attain. In this study, we demonstrate that the strategy of tethering can be used to rapidly discover highly specific covalent modulators of the dynamic PPIs between activators and coactivators. These serve as both ortho‐ and allosteric modulators, enabling the tunable assembly or disassembly of the activator–coactivator complexes formed between the KIX domain and its cognate activator binding partners MLL and CREB. The molecules maintain their function and selectivity, even in human cell lysates and in bacterial cells, and thus, will ultimately be highly useful probes for cellular studies.Joining forces: Reversible covalent modulators of the conformationally dynamic KIX coactivator are readily converted into irreversible inhibitors by replacement of the disulfide moiety. The irreversible inhibitors are effective and selective, even in human cell lysate.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146336/1/cbic201800173-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146336/2/cbic201800173.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146336/3/cbic201800173_am.pd

    Augmented pain behavioural responses to intra-articular injection of nerve growth factor in two animal models of osteoarthritis

    Get PDF
    Acknowledgements The authors would like to thank Paul Millns for his technical assistance with tissue (dorsal root ganglia) collection. Competing interests None. Provenance and peer review Not commissioned; externally peer reviewedPeer reviewedPublisher PD

    Optimization of DNA extraction from human urinary samples for mycobiome community profiling.

    Get PDF
    IntroductionRecent data suggest the urinary tract hosts a microbial community of varying composition, even in the absence of infection. Culture-independent methodologies, such as next-generation sequencing of conserved ribosomal DNA sequences, provide an expansive look at these communities, identifying both common commensals and fastidious organisms. A fundamental challenge has been the isolation of DNA representative of the entire resident microbial community, including fungi.Materials and methodsWe evaluated multiple modifications of commonly-used DNA extraction procedures using standardized male and female urine samples, comparing resulting overall, fungal and bacterial DNA yields by quantitative PCR. After identifying protocol modifications that increased DNA yields (lyticase/lysozyme digestion, bead beating, boil/freeze cycles, proteinase K treatment, and carrier DNA use), all modifications were combined for systematic confirmation of optimal protocol conditions. This optimized protocol was tested against commercially available methodologies to compare overall and microbial DNA yields, community representation and diversity by next-generation sequencing (NGS).ResultsOverall and fungal-specific DNA yields from standardized urine samples demonstrated that microbial abundances differed significantly among the eight methods used. Methodologies that included multiple disruption steps, including enzymatic, mechanical, and thermal disruption and proteinase digestion, particularly in combination with small volume processing and pooling steps, provided more comprehensive representation of the range of bacterial and fungal species. Concentration of larger volume urine specimens at low speed centrifugation proved highly effective, increasing resulting DNA levels and providing greater microbial representation and diversity.ConclusionsAlterations in the methodology of urine storage, preparation, and DNA processing improve microbial community profiling using culture-independent sequencing methods. Our optimized protocol for DNA extraction from urine samples provided improved fungal community representation. Use of this technique resulted in equivalent representation of the bacterial populations as well, making this a useful technique for the concurrent evaluation of bacterial and fungal populations by NGS

    A qualitative process evaluation using the behaviour change wheel approach: Did a whole genome sequence report form (SRF) used to reduce nosocomial SARS-CoV-2 within UK hospitals operate as anticipated?

    Get PDF
    PURPOSE: The aim of this study was to conduct a process evaluation of a whole-genome sequence report form (SRF) used to reduce nosocomial SARS-CoV-2 through changing infection prevention and control (IPC) behaviours within the COVID-19 pandemic. METHODS: We used a three-staged design. Firstly, we described and theorized the purported content of the SRF using the behaviour change wheel (BCW). Secondly, we used inductive thematic analysis of one-to-one interviews (n = 39) to explore contextual accounts of using the SRF. Thirdly, further deductive analysis gauged support for the intervention working as earlier anticipated. RESULTS: It was possible to theorize the SRF using the BCW approach and visualize it within a simple logic model. Inductive thematic analyses identified the SRF's acceptability, ease of use and perceived effectiveness. However, major challenges to embedding it in routine practice during the unfolding COVID-19 crisis were reported. Notwithstanding this insight, deductive analysis showed support for the putative intervention functions 'Education', 'Persuasion' and 'Enablement'; behaviour change techniques '1.2 Problem solving', '2.6 Biofeedback', '2.7 Feedback on outcomes of behaviour' and '7.1 Prompts and cues'; and theoretical domains framework domains 'Knowledge' and 'Behavioural regulation'. CONCLUSIONS: Our process evaluation of the SRF, using the BCW approach to describe and theorize its content, provided granular support for the SRF working to change IPC behaviours as anticipated. However, our complementary inductive thematic analysis highlighted the importance of the local context in constraining its routine use. For SRFs to reach their full potential in reducing nosocomial infections, further implementation research is needed

    Bifunctional Ligands Allow Deliberate Extrinsic Reprogramming of the Glucocorticoid Receptor

    Get PDF
    Therapies based on conventional nuclear receptor ligands are extremely powerful, yet their broad and long-term use is often hindered by undesired side effects that are often part of the receptor\u27s biological function. Selective control of nuclear receptors such as the glucocorticoid receptor (GR) using conventional ligands has proven particularly challenging. Because they act solely in an allosteric manner, conventional ligands are constrained to act via cofactors that can intrinsically partner with the receptor. Furthermore, effective means to rationally encode a bias for specific coregulators are generally lacking. Using the (GR) as a framework, we demonstrate here a versatile approach, based on bifunctional ligands, that extends the regulatory repertoire of GR in a deliberate and controlled manner. By linking the macrolide FK506 to a conventional agonist (dexamethasone) or antagonist (RU-486), we demonstrate that it is possible to bridge the intact receptor to either positively or negatively acting coregulatory proteins bearing an FK506 binding protein domain. Using this strategy, we show that extrinsic recruitment of a strong activation function can enhance the efficacy of the full agonist dexamethasone and reverse the antagonist character of RU-486 at an endogenous locus. Notably, the extrinsic recruitment of histone deacetylase-1 reduces the ability of GR to activate transcription from a canonical GR response element while preserving ligand-mediated repression of nuclear factor-ÎșB. By providing novel ways for the receptor to engage specific coregulators, this unique ligand design approach has the potential to yield both novel tools for GR study and more selective therapeutics

    Simulated Soil Water and Atmospheric Stress-Crop Yield Relationships for Economic Analysis

    Get PDF
    The Oklahoma Agricultural Experiment Station periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Therapeutic benefit for late, but not early, passage mesenchymal stem cells on pain behaviour in an animal model of osteoarthritis

    Get PDF
    Background: Mesenchymal stem cells (MSCs) have a therapeutic potential for the treatment of osteoarthritic (OA) joint pathology and pain. The aims of this study were to determine the influence of a passage number on the effects of MSCs on pain behaviour and cartilage and bone features in a rodent model of OA. Methods: Rats underwent either medial meniscal transection (MNX) or sham surgery under anaesthesia. Rats received intra-articular injection of either 1.5×106 late passage MSCs labelled with 10 ÎŒg/ml SiMAG, 1.5×106 late passage mesenchymal stem cells, the steroid Kenalog (200 ÎŒg/20 ÎŒL), 1.5×106 early passage MSCs, or serum-free media (SFM). Sham-operated rats received intra-articular injection of SFM. Pain behaviour was quantified until day 42 postmodel induction. Magnetic resonance imaging (MRI) was used to localise the labelled cells within the knee joint. Results: Late passage MSCs and Kenalog attenuated established pain behaviour in MNX rats, but did not alter MNX-induced joint pathology at the end of the study period. Early passage MSCs exacerbated MNX-induced pain behaviour for up to one week postinjection and did not alter joint pathology. Conclusion: Our data demonstrate for the first time the role of a passage number in influencing the therapeutic effects of MSCs in a model of OA pain
    • 

    corecore