424 research outputs found

    Partial (13)C isotopic enrichment of nucleoside monophosphates: useful reporters for NMR structural studies

    Get PDF
    Analysis of the (13)C isotopic labeling patterns of nucleoside monophosphates (NMPs) extracted from Escherichia coli grown in a mixture of C-1 and C-2 glucose is presented. By comparing our results to previous observations on amino acids grown in similar media, we have been able to rationalize the labeling pattern based on the well-known biochemistry of nucleotide biosynthesis. Except for a few notable absences of label (C4 in purines and C3′ in ribose) and one highly enriched site (C1′ in ribose), most carbons are randomly enriched at a low level (an average of 13%). These sparsely labeled NMPs give less complex NMR spectra than their fully isotopically labeled analogs due to the elimination of most (13)C–(13)C scalar couplings. The spectral simplicity is particularly advantageous when working in ordered systems, as illustrated with guanosine diphosphate (GDP) bound to ADP ribosylation factor 1 (ARF1) aligned in a liquid crystalline medium. In this system, the absence of scalar couplings and additional long-range dipolar couplings significantly enhances signal to noise and resolution

    A Dipolar Coupling Based Strategy for Simultaneous Resonance Assignment and Structure Determination of Protein Backbones

    Get PDF
    A new approach for simultaneous protein backbone resonance assignment and structure determination by NMR is introduced. This approach relies on recent advances in high-resolution NMR spectroscopy that allow observation of anisotropic interactions, such as dipolar couplings, from proteins partially aligned in field ordered media. Residual dipolar couplings are used for both geometric information and a filter in the assembly of residues in a sequential manner. Experimental data were collected in less than one week on a small redox protein, rubredoxin, that was 15N enriched but not enriched above 1% natural abundance in 13C. Given the acceleration possible with partial 13C enrichment, the protocol described should provide a very rapid route to protein structure determination. This is critical for the structural genomics initiative where protein expression and structural determination in a high-throughput manner will be needed

    Location of divalent ion sites in acyl carrier protein using relaxation perturbed 2D NMR

    Get PDF
    AbstractThe T1-accordion COSY experiment has been applied to acyl carrier protein (ACP) to locate the divalent ion binding sites in the protein using the paramagnetic ion, Mn2+, as a substitute for Ca2+. Replacement with Mn2+ leads to an enhancement of proton spin-lattice (T1) relaxation rates. These enhancements have a l/r6, distance dependence that makes them extremely useful in structural analyses. Ion-proton distances ranging from 3.0 to 9.0 Å have been obtained from this experiment and subsequently used as constraints in the molecular mechanics module of AMBER to refine a protein structure

    Direct Determination of Multiple Ligand Interactions with the Extracellular Domain of the Calcium Sensing Receptor

    Get PDF
    Numerous in vivo functional studies have indicated that the dimeric extracellular domain (ECD) of the CaSR plays a crucial role in regulating Ca2+ homeostasis by sensing Ca2+ and L-Phe. However, direct interaction of Ca2+ and Phe with the receptor’s ECD and the resultant impact on its structure and associated conformational changes have been hampered by the large size of the ECD, its high degree of glycosylation, and the lack of biophysical methods to monitor weak interactions in solution. In the present study, we purified the glycosylated extracellular domain of CaSR (ECD) (residues 20~612), containing either complex or high mannose N-glycan structures depending on the host cell line employed for recombinant expression. Both glycosylated forms of the CaSR ECD were purified as dimers and exhibit similar secondary structures with ~50% -helix, ~20% -sheet content and a well buried Trp environment. Using various spectroscopic methods, we have shown that both protein variants bind Ca2+ with a Kd of 3.0~5.0 mM. The local conformational changes of the proteins induced by their interactions with Ca2+ were visualized by NMR with specific 15N Phe-labeled forms of the ECD. Saturation transfer difference (STD) NMR approaches demonstrated for the first time a direct interaction between the CaSR ECD and L-Phe. We further demonstrated that L-Phe increases the binding affinity of the CaSR ECD for Ca2+. Our findings provide new insights into the mechanisms by which Ca2+ and amino acids regulate the CaSR and may pave the way for exploration of the structural properties of CaSR and other members of family C of the GPCR superfamily

    Unique opportunities for NMR methods in structural genomics

    Get PDF
    This Perspective, arising from a workshop held in July 2008 in Buffalo NY, provides an overview of the role NMR has played in the United States Protein Structure Initiative (PSI), and a vision of how NMR will contribute to the forthcoming PSI-Biology program. NMR has contributed in key ways to structure production by the PSI, and new methods have been developed which are impacting the broader protein NMR community

    Unique opportunities for NMR methods in structural genomics

    Get PDF
    This Perspective, arising from a workshop held in July 2008 in Buffalo NY, provides an overview of the role NMR has played in the United States Protein Structure Initiative (PSI), and a vision of how NMR will contribute to the forthcoming PSI-Biology program. NMR has contributed in key ways to structure production by the PSI, and new methods have been developed which are impacting the broader protein NMR community

    Three-dimensional structure of the weakly associated protein homodimer SeR13 using RDCs and paramagnetic surface mapping

    Get PDF
    The traditional NMR-based method for determining oligomeric protein structure usually involves distinguishing and assigning intra- and intersubunit NOEs. This task becomes challenging when determining symmetric homo-dimer structures because NOE cross-peaks from a given pair of protons occur at the same position whether intra- or intersubunit in origin. While there are isotope-filtering strategies for distinguishing intra from intermolecular NOE interactions in these cases, they are laborious and often prove ineffectual in cases of weak dimers, where observation of intermolecular NOEs is rare. Here, we present an efficient procedure for weak dimer structure determination based on residual dipolar couplings (RDCs), chemical shift changes upon dilution, and paramagnetic surface perturbations. This procedure is applied to the Northeast Structural Genomics Consortium protein target, SeR13, a negatively charged Staphylococcus epidermidis dimeric protein (Kd 3.4 ± 1.4 mM) composed of 86 amino acids. A structure determination for the monomeric form using traditional NMR methods is presented, followed by a dimer structure determination using docking under orientation constraints from RDCs data, and scoring under residue pair potentials and shape-based predictions of RDCs. Validation using paramagnetic surface perturbation and chemical shift perturbation data acquired on sample dilution is also presented. The general utility of the dimer structure determination procedure and the possible relevance of SeR13 dimer formation are discussed. Published by Wiley-Blackwell. © 2010 The Protein Society

    Validated determination of NRG1 Ig-like domain structure by mass spectrometry coupled with computational modeling

    Get PDF
    High resolution hydroxyl radical protein footprinting (HR-HRPF) is a mass spectrometry-based method that measures the solvent exposure of multiple amino acids in a single experiment, offering constraints for experimentally informed computational modeling. HR-HRPF-based modeling has previously been used to accurately model the structure of proteins of known structure, but the technique has never been used to determine the structure of a protein of unknown structure. Here, we present the use of HR-HRPF-based modeling to determine the structure of the Ig-like domain of NRG1, a protein with no close homolog of known structure. Independent determination of the protein structure by both HR-HRPF-based modeling and heteronuclear NMR was carried out, with results compared only after both processes were complete. The HR-HRPF-based model was highly similar to the lowest energy NMR model, with a backbone RMSD of 1.6 Å. To our knowledge, this is the first use of HR-HRPF-based modeling to determine a previously uncharacterized protein structure

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
    corecore