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Abstract This Perspective, arising from a workshop held

in July 2008 in Buffalo NY, provides an overview of the

role NMR has played in the United States Protein Structure

Initiative (PSI), and a vision of how NMR will contribute

to the forthcoming PSI-Biology program. NMR has con-

tributed in key ways to structure production by the PSI, and

new methods have been developed which are impacting the

broader protein NMR community.

Keywords Future of structural genomics �
Functional genomics � NMR � Crystallography �
NMR methods � Protein Structure Initiative (PSI)

The mission of structural coverage of most protein domain

families, pioneered in PSI phases 1 and 2, is well on its way

to completion [6]. NMR has played an integral role in this

endeavor [35, 43]. The goal of structural coverage at a

sequence identity level of *30% for most protein domains

in nature will represent a monumental achievement for

humankind, contributing in many ways toward our under-

standing of the relationships between protein sequence,

structure, and function. As we ponder the future contribu-

tions of structural genomics (SG) for biomedical research,

we envision many future opportunities beyond structure
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production that have been created by these high throughput

structural biology platforms.

In the coming years, target selection strategies likely

will go beyond the current sparse sampling of representa-

tive members of protein families to strategies aimed at

providing extensive structural coverage of functional bio-

logical systems at high resolution. These systems could

include (i) signaling networks and metabolic pathways, (ii)

proteomes of medically important species, particularly

humans, (iii) human disease-related proteins including

infectious diseases, (iv) the human and environmental

microbiomes (‘metagenomics’), and (v) comparative

analysis of structure, dynamics, and biochemical function

across protein families. The application of SG platforms to

one or more of these biological systems would leverage

NIH’s investment in SG pipelines to further our under-

standing of fundamental mechanisms of protein function,

molecular evolution, biological processes, and human dis-

ease at a reduced cost. Alternatively, SG centers could be

redefined to focus on increasing the range and types of

structures that presently cannot be routinely determined or

modeled; for example, membrane proteins, higher order

protein complexes, and eukaryotic proteins with extensive

natively disordered regions and/or posttranslational

modifications.

In considering future efforts, we note that the purified

proteins themselves are among the most valuable products

of SG efforts. The largest expense in SG is the preparation

of pure, soluble protein. Much more could be done with

these proteins, particularly the large fraction that does not

readily yield structures. Given that all proteins carry out

their biochemical function through their interactions with

other molecules, we propose that the full realization of the

potential of SG platforms must integrate studies of func-

tionally relevant interacting molecules for each protein

target. Therefore, we envision that a key element of future

SG projects or platforms would include a systematic

attempt to integrate experimental protein binding, and/or

biochemical information with structural data. Examples of

such strategies, which would include HTP biochemical

characterization of proteins, are (i) screening of ligand

binding coupled with 3D structure analysis of functional

protein-ligand complexes (see, for example, [23, 37], (ii)

screening or characterization of enzymatic activity coupled

with 3D structures of relevant protein substrate/cofactor/

inhibitor complexes (see, for example, [28], and (iii)

identification of protein-protein interaction partners cou-

pled with 3D structures of relevant multiprotein complexes.

A particularly powerful application of such integrated SG/

functional studies would be the systematic and compre-

hensive characterization of the structural basis of ligand (or

substrate) binding specificity of proteins with related, but

distinct, binding profiles, so as to understand the structural

basis of their specificity. Here we define ‘‘ligand’’ as any

small molecule or macromolecule that interacts function-

ally with a protein. By adopting this approach, SG would

have stronger synergy with functional genomics activities,

and better integration with systems biology. These studies

would also identify complexes that stabilize protein struc-

tures, and enable structures to be determined for otherwise

refractory proteins.

NMR spectroscopy has a unique and valuable role in

SG

During the course of PSI phases 1 and 2, we have shown

that NMR is a highly complementary approach to X-ray

crystallography for protein structure determination [32,

44]. Many proteins that provide good NMR spectra have

not been successfully crystallized. In particular, in contrast

to X-ray crystallography, NMR is about equally successful

for prokaryotic and eukaryotic proteins. Therefore, com-

prehensive structural coverage of any protein system

involving small to medium sized proteins would benefit

from an NMR component.

NMR data provide the basis for extending the static

structural view of proteins, through the rapid identification

of natively unfolded proteins and residue-specific charac-

terization of disordered protein segments, including

functionally important flexible surface loops. NMR is also

an essential tool for characterizing alternative conforma-

tions and allosteric states. In some cases, the minor

conformational states that can only be characterized by

NMR studies are critically important for biological func-

tion. NMR can also be used to measure the rates of

transitions between these conformational states. As such,

future SG efforts seeking to understand the evolution of

structural, functional, and dynamic diversity across a pro-

tein family will require NMR studies to provide dynamic

information.

NMR is also a powerful method for screening of func-

tional protein-ligand, protein-protein, and protein-nucleic

acid interactions. While other biophysical techniques are

also capable of identifying such interactions, NMR is

uniquely able to identify even transient, but functionally

important, interactions. The protein samples, and most of

the instrumentation and techniques required for rapid NMR

screening studies, are the same as those already used in PSI

NMR structure determination pipelines, allowing easy

integration of functional screening techniques. NMR

methods are also valuable for validating initial ‘hits’

identified in HTP screening. It is important to recognize

that the use of NMR as a HTP screening tool is not limited

by protein size, since one may monitor either the protein or

the ligand to detect the interaction.
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Finally, NMR data are used to generate new functional

hypotheses, and to confirm functional annotations, inter-

actions, or biochemical reaction rates revealed in other

‘‘omics’’ projects (e.g., functional genomics, transcripto-

mics, or metabonomics). Hence, we envision that NMR

will play a key role to connect SG with these ‘omics’

approaches, thereby better integrating SG into systems

biology.

Accomplishments of NMR SG groups during PSI

One Large Scale Center, The Northeast Structural

Genomics Consortium (NESG), and one Specialized Cen-

ter, the Center for Eukaryotic Structural Genomics

(CESG), have made major commitments to protein NMR

sample and structure production. The two centers have

deposited into the PDB some 300 protein NMR structures

([90% of the PSI NMR structures) over the first 8 years of

the PSI program. Thus, with *12% of PSI resources

dedicated to NMR pipelines, *10% of PSI structures have

been determined by NMR. Given similar levels of support

and priority in these two centers, NMR makes contribu-

tions to structure production that are comparable to X-ray

crystallography (Fig. 1, left panel). The Joint Center for

Structural Genomics (JCSG), Center for Structure of

Membrane Proteins (CSMP), and New York Center on

Membrane Protein Structure (NYCOMPS) have also used

NMR effectively, though with a smaller percentage effort.

Many of these structures would not have been solved

without the participation of NMR. Indeed, *15% of small

proteins provided by other Large Scale Centers to NESG

NMR groups, because they could not be crystallized suc-

cessfully, subsequently provided 3D structures by NMR.

Many other potential opportunities to solve PSI target

structures may have been missed by the other PSI centers,

where NMR-tractable proteins have been produced, but not

pursued by NMR analysis.

Comparison of PSI and non-SG protein NMR structures

deposited in the PDB during the same time period reveals

that (i) the average molecular weight (MW) of PSI NMR

structures, *13 kDa, is similar to that of non-SG structures

(Fig. 1, right panel), (ii) the fraction of homo-oligomeric

protein structures (*15%) is also about the same, but (iii)

the quality of PSI NMR structures is significantly better,

when considering PROCHECK dihedral angle distribution

and MOLPROBITY atomic clash scores (Fig. 2). As a

consequence, PSI NMR structures are generally of suffi-

ciently high accuracy to be used in crystallographic

molecular replacement studies [30], and as useful as

medium-resolution (1.8–2.5 Å) X-ray crystal structures for

high-quality homology modeling (e.g., [22, 24]). The PSI

NMR structure pipelines have also demonstrated that they

can address challenging protein targets, including proteins

with MW 20–35 kDa (Fig 1, right panel), dimeric and

tetrameric proteins, and membrane proteins.

NESG, CESG, and JCSG have also developed new

methodology for lowering the costs per NMR structure,

including (i) protocols for HTP preparation of 13C/15N- and
13C/15N/2H- enriched samples using novel eukaryotic

wheat-germ based cell-free expression systems [39, 40]

and bacterial single protein production (SPP) systems [29,

33, 34], (ii) HTP NMR screening platforms using micro-

probe robotics for buffer and construct optimization [1],

(iii) GFT NMR [2, 3, 19, 20, 36], and related HIFI [8] and

APSY [13–15] NMR experiments for reducing NMR

measurement times by more than an order of magnitude,

(iv) software for semi-automated data analysis and struc-

ture calculations [4, 9–18, 21, 25, 26, 41, 46], (v) software

and protocols for structure validation and refinement based

on residual dipolar couplings (RDCs) and chemical shifts

[31, 38, 42], and (vi) software and servers for compre-

hensive structure quality assessment [5, 17] and refinement

[30]. These methods have reduced the average time

required per structure to 2–3 weeks for small to medium

sized proteins; in favorable cases, NMR structures are

Fig. 1 (left panel) In the two PSI centers with major commitments to

NMR sample and structure production some 37% of structures were

determined by NMR (42% and 22% in NESG and CESG, respec-

tively). (right panel) MW distributions for protein NMR structures

([50 residues) determined by PSI groups and non SG groups in the

same time period are similar. Inset—histogram plot of MW distri-

bution of PSI NMR structures. Statistics were compiled in October

2008
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determined in only a few days. Although not in the original

charge to the PSI NMR groups, recent efforts in technology

development have focused on addressing larger proteins,

oligomeric structures, and protein-protein complexes. For

example, the NYCOMPS and CSMP have made significant

advances in developing new methods for sample prepara-

tion and NMR analysis of membrane protein structures

[45, 27].

A promising future for NMR contributions to SG and

the larger biomedical community

NMR’s role in structural biology is still rapidly evolving.

Unlike x-ray crystallography, which has matured to a state

in which almost all aspects can be highly automated, NMR

is still approaching this goal. We are very optimistic that

over the next decade NMR will continue to make gains

analogous to those seen for crystallography over the past

few decades. For example, recent advances demonstrate

that sparse constraints, such as chemical shift, residual

dipolar coupling data, and/or small numbers of long-range

distance constraints, can be combined with conformational

energy calculations to provide good quality protein struc-

tures. These emerging technologies will expand the range

of proteins that can be addressed at high resolution by

NMR, as well as the speed with which this can be done.

The new avenues of biological research opened by SG

platforms will be tremendously enhanced by these NMR

technologies. Clearly, NMR approaches offer tremendous

opportunities for SG projects, and will be required in order

to extract the greatest knowledge and understanding of

whichever biological systems are targeted in the next phase

of SG research.
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