24 research outputs found

    Use of gas cluster ion source depth profiling to study the oxidation of fullerene thin films by XPS

    Get PDF
    The analysis of organic materials such as phenyl-C61-butyric acid methyl ester (PC61BM) by depth profiling is typically fraught with difficulty due to the fragile nature of the sample. In this work we utilise a gas cluster ion source for the controlled depth profiling of organic materials that would historically have been too fragile to analyse and obtain quantitative compositional data through the whole thickness of the film. In particular we examine the oxygen diffusion and photo-oxidation kinetics of one of the most commonly used electron acceptor materials for many organic optoelectronic applications, namely PC61BM, in both neat films and in blends with polystyrene. Exposure to AM1.5G light and air under ambient conditions, results in a higher level of surface oxidation of blended PC61BM:polystyrene than is observed for either pure control film. Gas cluster ion source depth profiling further confirms that this oxidation is strongest at the extreme surface, but that over time elevated oxygen levels associated with oxidised organic species are observed to penetrate through the whole blended film. The results presented herein provide further insights on the environmental stability of fullerene based organic optoelectronic devices

    Composition analysis of Ta3N5/W18O49 nanocomposite through XPS

    Get PDF
    A characterization of a nanocomposite material consisting of Ta3N5 nanoparticles and W18O49 nanowires is presented. The material is of interest for photocatalytic applications, with a focus on pollution reduction through the photodegradation of dye waste; under white light illumination, the combination of Ta3N5 and W18O49 yielded an enhanced rate of dye degradation relative to Ta3N5 particles alone. The facile method of synthesis is thought to be a promising route for both upscale and commercial utilization of the material. X-ray photoelectron spectroscopy revealed a core–shell composite structure with W18O49 present as an overlayer on Ta3N5; the analyzed spectra for the C 1s, O 1s, Ta 4f, N 1s, W 4f, and Na 1s regions are reported. It should be noted that due to differential charging of the underlying Ta3N5 component relative to the W18O49 shell, an additional uncompensated voltage shift may exist in the Ta 4f and N 1s spectra

    Generalised Framework for Controlling and Understanding Ion Dynamics with Passivated Lead Halide Perovskites

    Full text link
    Metal halide perovskite solar cells have gained widespread attention due to their high efficiency and high defect tolerance. The absorbing perovskite layer is as a mixed electron-ion conductor that supports high rates of ion and charge transport at room temperature, but the migration of mobile defects can lead to degradation pathways. We combine experimental observations and drift-diffusion modelling to demonstrate a new framework to interpret surface photovoltage (SPV) measurements in perovskite systems and mixed electronic ionic conductors more generally. We conclude that the SPV in mixed electronic ionic conductors can be understood in terms of the change in electric potential at the surface associated with changes in the net charge within the semiconductor system. We show that by modifying the interfaces of perovskite bilayers, we may control defect migration behaviour throughout the perovskite bulk. Our new framework for SPV has broad implications for developing strategies to improve the stability of perovskite devices by controlling defect accumulation at interfaces. More generally, in mixed electronic conductors our framework provides new insights into the behaviour of mobile defects and their interaction with photoinduced charges, which are foundational to physical mechanisms in memristivity, logic, impedance, sensors and energy storage

    On-demand electrical switching of antibody-antigen binding on surfaces

    Get PDF
    The development of stimuli-responsive interfaces between synthetic materials and biological systems is providing the unprecedented ability to modulate biomolecular interactions for a diverse range of biotechnological and biomedical applications. Antibody–antigen binding interactions are at the heart of many biosensing platforms, but no attempts have been made yet to control antibody–antigen binding in an on-demand fashion. Herein, a molecular surface was designed and developed that utilizes an electric potential to drive a conformational change in surface bound peptide moiety, to give on-demand control over antigen–antibody interactions on sensor chips. The molecularly engineered surfaces allow for propagation of conformational changes from the molecular switching unit to a distal progesterone antigen, resulting in promotion (ON state) or inhibition (OFF state) of progesterone antibody binding. The approach presented here can be generally applicable to other antigen–antibody systems and meets the technological needs for in situ long-term assessment of biological processes and disease monitoring on-demand

    Surface-initiated growth of copper using isonicotinic acid-functionalized aluminum oxide surfaces

    Get PDF
    Isonicotinate self-assembled monolayers (SAM) were prepared on alumina surfaces (A) using isonicotinic acid (iNA). These functionalized layers (iNA-A) were used for the seeded growth of copper films (Cu-iNA-A) by hydrazine hydrate-initiated electroless deposition. The films were characterized by scanning electron microscopy (SEM), electron-dispersive X-ray spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and advancing contact angle measurements. The films are Cu0 but with surface oxidation, and show a faceted morphology, which is more textured (Rq = 460 ± 90 nm) compared to the SAM (Rq = 2.8 ± 0.5 nm). In contrast, growth of copper films by SnCl2/PdCl2 catalyzed electroless deposition, using formaldehyde (CH2O) as the reducing agent, shows a nodular morphology on top of a relatively smooth surface. No copper films are observed in the absence of the isonicotinate SAM. The binding of Cu2+ to the iNA is proposed to facilitate reduction to Cu0 and create the seed for subsequent growth. The films show good adhesion to the functionalized surface

    Investigation into the effects of surface stripping ZnO nanosheets

    Get PDF
    ZnO nanosheets are polycrystalline nanostructures that are used in devices including solar cells and gas sensors. However, for efficient and reproducible device operation and contact behaviour the conductivity characteristics must be controlled and surface contaminants removed. Here we use low doses of argon bombardment to remove surface contamination and make reproducible lower resistance contacts. Higher doses strip the surface of the nanosheets altering the contact type from near-ohmic to rectifying by removing the donor-type defects, which photoluminescence shows to be concentrated in the near-surface. Controlled doses of argon treatments allow nanosheets to be customised for device formation

    The COMBREX Project: Design, Methodology, and Initial Results

    Get PDF
    © 2013 Brian P. et al.Prior to the “genomic era,” when the acquisition of DNA sequence involved significant labor and expense, the sequencing of genes was strongly linked to the experimental characterization of their products. Sequencing at that time directly resulted from the need to understand an experimentally determined phenotype or biochemical activity. Now that DNA sequencing has become orders of magnitude faster and less expensive, focus has shifted to sequencing entire genomes. Since biochemistry and genetics have not, by and large, enjoyed the same improvement of scale, public sequence repositories now predominantly contain putative protein sequences for which there is no direct experimental evidence of function. Computational approaches attempt to leverage evidence associated with the ever-smaller fraction of experimentally analyzed proteins to predict function for these putative proteins. Maximizing our understanding of function over the universe of proteins in toto requires not only robust computational methods of inference but also a judicious allocation of experimental resources, focusing on proteins whose experimental characterization will maximize the number and accuracy of follow-on predictions.COMBREX is funded by a GO grant from the National Institute of General Medical Sciences (NIGMS) (1RC2GM092602-01).Peer Reviewe

    Oral Abstracts 7: RA ClinicalO37. Long-Term Outcomes of Early RA Patients Initiated with Adalimumab Plus Methotrexate Compared with Methotrexate Alone Following a Targeted Treatment Approach

    Get PDF
    Background: This analysis assessed, on a group level, whether there is a long-term advantage for early RA patients treated with adalimumab (ADA) + MTX vs those initially treated with placebo (PBO) + MTX who either responded to therapy or added ADA following inadequate response (IR). Methods: OPTIMA was a 78- week, randomized, controlled trial of ADA + MTX vs PBO + MTX in MTX-naĂŻve early (<1 year) RA patients. Therapy was adjusted at week 26: ADA + MTX-responders (R) who achieved DAS28 (CRP) <3.2 at weeks 22 and 26 (Period 1, P1) were re-randomized to withdraw or continue ADA and PBO + MTX-R continued randomized therapy for 52 weeks (P2); IR-patients received open-label (OL) ADA + MTX during P2. This post hoc analysis evaluated the proportion of patients at week 78 with DAS28 (CRP) <3.2, HAQ-DI <0.5, and/or ΔmTSS ≀0.5 by initial treatment. To account for patients who withdrew ADA during P2, an equivalent proportion of R was imputed from ADA + MTX-R patients. Results: At week 26, significantly more patients had low disease activity, normal function, and/or no radiographic progression with ADA + MTX vs PBO + MTX (Table 1). Differences in clinical and functional outcomes disappeared following additional treatment, when PBO + MTX-IR (n = 348/460) switched to OL ADA + MTX. Addition of OL ADA slowed radiographic progression, but more patients who received ADA + MTX from baseline had no radiographic progression at week 78 than patients who received initial PBO + MTX. Conclusions: Early RA patients treated with PBO + MTX achieved comparable long-term clinical and functional outcomes on a group level as those who began ADA + MTX, but only when therapy was optimized by the addition of ADA in PBO + MTX-IR. Still, ADA + MTX therapy conferred a radiographic benefit although the difference did not appear to translate to an additional functional benefit. Disclosures: P.E., AbbVie, Merck, Pfizer, UCB, Roche, BMS—Provided Expert Advice, Undertaken Trials, AbbVie—AbbVie sponsored the study, contributed to its design, and participated in the collection, analysis, and interpretation of the data, and in the writing, reviewing, and approval of the final version. R.F., AbbVie, Pfizer, Merck, Roche, UCB, Celgene, Amgen, AstraZeneca, BMS, Janssen, Lilly, Novartis—Research Grants, Consultation Fees. S.F., AbbVie—Employee, Stocks. A.K., AbbVie, Amgen, AstraZeneca, BMS, Celgene, Centocor-Janssen, Pfizer, Roche, UCB—Research Grants, Consultation Fees. H.K., AbbVie—Employee, Stocks. S.R., AbbVie—Employee, Stocks. J.S., AbbVie, Amgen, AstraZeneca, BMS, Celgene, Centocor-Janssen, GlaxoSmithKline, Lilly, Pfizer (Wyeth), MSD (Schering-Plough), Novo-Nordisk, Roche, Sandoz, UCB—Research Grants, Consultation Fees. R.V., AbbVie, BMS, GlaxoSmithKline, Human Genome Sciences, Merck, Pfizer, Roche, UCB Pharma—Consultation Fees, Research Support. Table 1.Week 78 clinical, functional, and radiographic outcomes in patients who received continued ADA + MTX vs those who continued PBO + MTX or added open-label ADA following an inadequate response ADA + MTX, n/N (%)a PBO + MTX, n/N (%)b Outcome Week 26 Week 52 Week 78 Week 26 Week 52 Week 78 DAS28 (CRP) <3.2 246/466 (53) 304/465 (65) 303/465 (65) 139/460 (30)*** 284/460 (62) 300/460 (65) HAQ-DI <0.5 211/466 (45) 220/466 (47) 224/466 (48) 150/460 (33)*** 203/460 (44) 208/460 (45) ΔmTSS ≀0.5 402/462 (87) 379/445 (86) 382/443 (86) 330/459 (72)*** 318/440 (72)*** 318/440 (72)*** DAS28 (CRP) <3.2 + ΔmTSS ≀0.5 216/462 (47) 260/443 (59) 266/443 (60) 112/459 (24)*** 196/440 (45) 211/440 (48)*** DAS28 (CRP) <3.2 + HAQ-DI <0.5 + ΔmTSS ≀0.5 146/462 (32) 168/443 (38) 174/443 (39) 82/459 (18)*** 120/440 (27)*** 135/440 (31)** aIncludes patients from the ADA Continuation (n = 105) and OL ADA Carry On (n = 259) arms, as well as the proportional equivalent number of responders from the ADA Withdrawal arm (n = 102). bIncludes patients from the MTX Continuation (n = 112) and Rescue ADA (n = 348) arms. Last observation carried forward: DAS28 (CRP) and HAQ-DI; Multiple imputations: ΔmTSS. ***P < 0.001 and **iP < 0.01, respectively, for differences between initial treatments from chi-squar
    corecore