900 research outputs found
Production, use, and fate of all plastics ever made
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 3 (2017): e1700782, doi:10.1126/sciadv.1700782.Plastics have outgrown most man-made materials and have long been under environmental scrutiny. However, robust global information, particularly about their end-of-life fate, is lacking. By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, we present the first global analysis of all mass-produced plastics ever manufactured. We estimate that 8300 million metric tons (Mt) as of virgin plastics have been produced to date. As of 2015, approximately 6300 Mt of plastic waste had been generated, around 9% of which had been recycled, 12% was incinerated, and 79% was accumulated in landfills or the natural environment. If current production and waste management trends continue, roughly 12,000 Mt of plastic waste will be in landfills or in the natural environment by 2050.R.G. was
supported by the NSF Chemical, Bioengineering, Environmental and Transport Systems
grant #1335478
Domain architecture of a Caenorhabditis elegans AKAP suggests a novel AKAP function
AbstractA-kinase anchoring proteins (AKAPs) are adapter proteins that are involved in directing cAMP-dependent protein kinase and some other signaling enzymes to certain intracellular locations. In this study, we investigate the domain architecture of an AKAP from Caenorhabditis elegans (AKAPCE). We show that AKAPCE shares two domains with the Smad anchor for receptor activation, a FYVE-finger and a transforming growth factor β (TGFβ) receptor binding domain, suggesting that AKAPCE may interact with a receptor belonging to the TGFβ receptor family. This predicted novel AKAP function supports the recent view of AKAPs as adapter proteins that can be involved in various signaling pathways
Editorial : The sustainability series : the plastics problem - pathways towards sustainable solutions against plastic pollution
publishedVersio
The United States' contribution of plastic waste to land and ocean
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., & Leonard, G. H. The United States' contribution of plastic waste to land and ocean. Science Advances, 6(44), (2020): eabd0288, doi:10.1126/sciadv.abd0288.Plastic waste affects environmental quality and ecosystem health. In 2010, an estimated 5 to 13 million metric tons (Mt) of plastic waste entered the ocean from both developing countries with insufficient solid waste infrastructure and high-income countries with very high waste generation. We demonstrate that, in 2016, the United States generated the largest amount of plastic waste of any country in the world (42.0 Mt). Between 0.14 and 0.41 Mt of this waste was illegally dumped in the United States, and 0.15 to 0.99 Mt was inadequately managed in countries that imported materials collected in the United States for recycling. Accounting for these contributions, the amount of plastic waste generated in the United States estimated to enter the coastal environment in 2016 was up to five times larger than that estimated for 2010, rendering the United States’ contribution among the highest in the world.This work was funded by Ocean Conservancy through support from the Arthur Vining Davis Foundations
Embed systemic equity throughout industrial ecology applications: How to address machine learning unfairness and bias
\ua9 2024 The Authors. Journal of Industrial Ecology published by Wiley Periodicals LLC on behalf of International Society for Industrial Ecology. Recent calls have been made for equity tools and frameworks to be integrated throughout the research and design life cycle —from conception to implementation—with an emphasis on reducing inequity in artificial intelligence (AI) and machine learning (ML) applications. Simply stating that equity should be integrated throughout, however, leaves much to be desired as industrial ecology (IE) researchers, practitioners, and decision-makers attempt to employ equitable practices. In this forum piece, we use a critical review approach to explain how socioecological inequities emerge in ML applications across their life cycle stages by leveraging the food system. We exemplify the use of a comprehensive questionnaire to delineate unfair ML bias across data bias, algorithmic bias, and selection and deployment bias categories. Finally, we provide consolidated guidance and tailored strategies to help address AI/ML unfair bias and inequity in IE applications. Specifically, the guidance and tools help to address sensitivity, reliability, and uncertainty challenges. There is also discussion on how bias and inequity in AI/ML affect other IE research and design domains, besides the food system—such as living labs and circularity. We conclude with an explanation of the future directions IE should take to address unfair bias and inequity in AI/ML. Last, we call for systemic equity to be embedded throughout IE applications to fundamentally understand domain-specific socioecological inequities, identify potential unfairness in ML, and select mitigation strategies in a manner that translates across different research domains
Embed systemic equity throughout industrial ecology applications:How to address machine learning unfairness and bias
Recent calls have been made for equity tools and frameworks to be integrated throughout the research and design life cycle —from conception to implementation—with an emphasis on reducing inequity in artificial intelligence (AI) and machine learning (ML) applications. Simply stating that equity should be integrated throughout, however, leaves much to be desired as industrial ecology (IE) researchers, practitioners, and decision-makers attempt to employ equitable practices. In this forum piece, we use a critical review approach to explain how socioecological inequities emerge in ML applications across their life cycle stages by leveraging the food system. We exemplify the use of a comprehensive questionnaire to delineate unfair ML bias across data bias, algorithmic bias, and selection and deployment bias categories. Finally, we provide consolidated guidance and tailored strategies to help address AI/ML unfair bias and inequity in IE applications. Specifically, the guidance and tools help to address sensitivity, reliability, and uncertainty challenges. There is also discussion on how bias and inequity in AI/ML affect other IE research and design domains, besides the food system—such as living labs and circularity. We conclude with an explanation of the future directions IE should take to address unfair bias and inequity in AI/ML. Last, we call for systemic equity to be embedded throughout IE applications to fundamentally understand domain-specific socioecological inequities, identify potential unfairness in ML, and select mitigation strategies in a manner that translates across different research domains.</p
Satellite Monitoring of Terrestrial Plastic Waste
Plastic waste is a significant environmental pollutant that is difficult to
monitor. We created a system of neural networks to analyze spectral, spatial,
and temporal components of Sentinel-2 satellite data to identify terrestrial
aggregations of waste. The system works at continental scale. We evaluated
performance in Indonesia and detected 374 waste aggregations, more than double
the number of sites found in public databases. The same system deployed across
twelve countries in Southeast Asia identifies 996 subsequently confirmed waste
sites. For each detected site, we algorithmically monitor waste site footprints
through time and cross-reference other datasets to generate physical and social
metadata. 19% of detected waste sites are located within 200 m of a waterway.
Numerous sites sit directly on riverbanks, with high risk of ocean leakage.Comment: 14 pages, 14 figure
The fundamental links between climate change and marine plastic pollution
Plastic pollution and climate change have commonly been treated as two separate issues and sometimes are even seen as competing. Here we present an alternative view that these two issues are fundamentally linked. Primarily, we explore how plastic contributes to greenhouse gas (GHG) emissions from the beginning to the end of its life cycle. Secondly, we show that more extreme weather and floods associated with climate change, will exacerbate the spread of plastic in the natural environment. Finally, both issues occur throughout the marine environment, and we show that ecosystems and species can be particularly vulnerable to both, such as coral reefs that face disease spread through plastic pollution and climate-driven increased global bleaching events. A Web of Science search showed climate change and plastic pollution studies in the ocean are often siloed, with only 0.4% of the articles examining both stressors simultaneously. We also identified a lack of regional and industry-specific life cycle analysis data for comparisons in relative GHG contributions by materials and products. Overall, we suggest that rather than debate over the relative importance of climate change or marine plastic pollution, a more productive course would be to determine the linking factors between the two and identify solutions to combat both crises
Emissions of C&D refuse in landfills: a European case
ABSTRACT: A field study was developed in a new landfill for refuse from construction and demolition (C&D) material recovery plants of small size (4 Ha.) in Europe, with the aim of evaluating the liquid and gas emissions in this type of facility at a large scale. It included characterization of the materials, monitoring leachate and gas quantity and composition. Besides thermometers, piezometers and sampling ports were placed in several points within the waste. This paper presents the data obtained for five years of the landfill life. The materials disposed were mainly made up of wood and concrete, similar to other C&D debris sites, but the amount of gypsum drywall (below 3% of the waste) was significantly smaller than other available studies, where percentages above 20% had been reported. Leachate contained typical C&D pollutants, such as different inorganic ions and metals, some of which exceeded other values reported in the literature (conductivity, ammonium, lead and arsenic). The small net precipitation in the area and the leachate recirculation into the landfill surface help explain these higher concentrations, thus highlighting the impact of liquid to solid (L/S) ratio on leachate characteristics. In contrast to previous studies, neither odor nuisances nor significant landfill gas over the surface were detected. However, gas samples taken from the landfill inside revealed sulfate reducing and methanogenic activity
Recommended from our members
Impact of polystyrene microplastics on Daphnia magna mortality and reproduction in relation to food availability
Microplastics (MPs) in the environment continue to be a growing area of concern in terms of acute and chronic impacts on aquatic life. Whilst increasing numbers of studies are providing important insights into microparticle behaviour and impacts in the marine environment, a paucity of information exists regarding the freshwater environment. This study focusses on the uptake, retention and the impact of 2µm polystyrene MPs in the freshwater cladoceran Daphnia magna in relation to food intake (algae Chlorella vulgaris), with MP size chosen to approximately match the cell size of the algae. Daphnia were exposed to varied concentrations of MPs and algae.
When exposed to a single concentration of MPs Daphnia almost immediately ingested them in large quantities. However, the presence of algae, even at low concentrations, had a significant negative impact on MP uptake that was not in proportion to relative availability. As MP concentrations increased, intake did not if algae were present, even at higher concentrations of MPs. This suggests that Daphnia are selectively avoiding ingesting plastics.
Adult Daphnia exposed to MPs for 21 days showed mortality after 7 days of exposure in all treatments compared to the control. However significant differences were all related to algal concentration rather than to MP concentration. This suggests that where ample food is present, MPs have little effect on adults. There was also no impact on their reproduction.
The neonate toxicity test confirmed previous results that mortality and reproduction was linked to availability of food rather than MP concentrations. This would make sense in light of our suggestion that Daphnia are selectively avoiding ingesting microplastics
- …