291 research outputs found
Patterns of modern pollen and plant richness across northern Europe
Sedimentary pollen offers excellent opportunities to reconstruct vegetation changes over past millennia. Number of different pollen taxa or pollen richness is used to characterise past plant richness. To improve the interpretation of sedimentary pollen richness, it is essential to understand the relationship between pollen and plant richness in contemporary landscapes. This study presents a regional-scale comparison of pollen and plant richness from northern Europe and evaluates the importance of environmental variables on pollen and plant richness. We use a pollen dataset of 511 lake-surface pollen samples ranging through temperate, boreal and tundra biomes. To characterise plant diversity, we use a dataset formulated from the two largest plant atlases available in Europe. We compare pollen and plant richness estimates in different groups of taxa (wind-pollinated vs. non-wind-pollinated, trees and shrubs vs. herbs and grasses) and test their relationships with climate and landscape variables. Pollen richness is significantly positively correlated with plant richness (r = 0.53). The pollen plant richness correlation improves (r = 0.63) when high pollen producers are downweighted prior to estimating richness minimising the influence of pollen production on the pollen richness estimate. This suggests that methods accommodating pollen-production differences in richness estimates deserve further attention and should become more widely used in Quaternary pollen diversity studies. The highest correlations are found between pollen and plant richness of trees and shrubs (r = 0.83) and of wind-pollinated taxa (r = 0.75) suggesting that these are the best measures of broad-scale plant richness over several thousands of square kilometres. Mean annual temperature is the strongest predictor of both pollen and plant richness. Landscape openness is positively associated with pollen richness but not with plant richness. Pollen richness values from extremely open and/or cold areas where pollen production is low should be interpreted with caution because low local pollen production increases the proportion of extra-regional pollen. Synthesis. Our results confirm that pollen data can provide insights into past plant richness changes in northern Europe, and with careful consideration of pollen-production differences and spatial scale represented, pollen data make it possible to investigate vegetation diversity trends over long time-scales and under changing climatic and habitat conditions.Peer reviewe
LUX -- A Laser-Plasma Driven Undulator Beamline
The LUX beamline is a novel type of laser-plasma accelerator. Building on the
joint expertise of the University of Hamburg and DESY the beamline was
carefully designed to combine state-of-the-art expertise in laser-plasma
acceleration with the latest advances in accelerator technology and beam
diagnostics. LUX introduces a paradigm change moving from single-shot
demonstration experiments towards available, stable and controllable
accelerator operation. Here, we discuss the general design concepts of LUX and
present first critical milestones that have recently been achieved, including
the generation of electron beams at the repetition rate of up to 5 Hz with
energies above 600 MeV and the generation of spontaneous undulator radiation at
a wavelength well below 9 nm.Comment: submitte
Chirp mitigation of plasma-accelerated beams using a modulated plasma density
Plasma-based accelerators offer the possibility to drive future compact light
sources and high-energy physics applications. Achieving good beam quality,
especially a small beam energy spread, is still one of the major challenges.
For stable transport, the beam is located in the focusing region of the
wakefield which covers only the slope of the accelerating field. This, however,
imprints a longitudinal energy correlation (chirp) along the bunch. Here, we
propose an alternating focusing scheme in the plasma to mitigate the
development of this chirp and thus maintain a small energy spread
Laser-plasma injector for an electron storage ring
Laser-plasma accelerators (LPAs) are compact accelerators with field gradients that are approximately 3 orders of magnitude higher than RF-based machines, which allows for very compact accelerators. LPAs have matured from proof-of principle experiments to accelerators that can reproducibly generate ultrashort high-brightness electron bunches. Here we will discuss a first combination of LPAs with an electron storage ring, namely an LPA-based injector for the cSTART ring at the Karlsruher Institute of Technology (KIT). The cSTART ring is currently in the final design phase. It will accept electron bunches with an energy of 50 MeV and will have a large energy acceptance to accommodate the comparably large energy spread of LPA-generated electron beams. The LPA will be required to reproducibly and reliably generate 50 MeV electron bunches with few percent energy spread. To that end, different controlled electron injection methods into the plasma accelerating structure, tailored plasma densities are explored and beam transfer lines to tailor the beam properties are designed
Bayesian optimization of laser-plasma accelerators assisted by reduced physical models
Particle-in-cell simulations are among the most essential tools for the
modeling and optimization of laser-plasma accelerators, since they reproduce
the physics from first principles. However, the high computational cost
associated with them can severely limit the scope of parameter and design
optimization studies. Here, we show that a multitask Bayesian optimization
algorithm can be used to mitigate the need for such high-fidelity simulations
by incorporating information from inexpensive evaluations of reduced physical
models. In a proof-of-principle study, where a high-fidelity optimization with
FBPIC is assisted by reduced-model simulations with Wake-T, the algorithm
demonstrates an order-of-magnitude speedup. This opens a path for the
cost-effective optimization of laser-plasma accelerators in large parameter
spaces, an important step towards fulfilling the high beam quality requirements
of future applications
Topological Photonics
Topology is revolutionizing photonics, bringing with it new theoretical
discoveries and a wealth of potential applications. This field was inspired by
the discovery of topological insulators, in which interfacial electrons
transport without dissipation even in the presence of impurities. Similarly,
new optical mirrors of different wave-vector space topologies have been
constructed to support new states of light propagating at their interfaces.
These novel waveguides allow light to flow around large imperfections without
back-reflection. The present review explains the underlying principles and
highlights the major findings in photonic crystals, coupled resonators,
metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1
tabl
Developing a 50 MeV LPA-based Injector at ATHENA for a Compact Storage Ring
The laser-driven generation of relativistic electron beams in plasma and
their acceleration to high energies with GV/m-gradients has been successfully
demonstrated. Now, it is time to focus on the application of laser-plasma
accelerated (LPA) beams. The "Accelerator Technology HElmholtz iNfrAstructure"
(ATHENA) of the Helmholtz Association fosters innovative particle accelerators
and high-power laser technology. As part of the ATHENAe pillar several
different applications driven by LPAs are to be developed, such as a compact
FEL, medical imaging and the first realization of LPA-beam injection into a
storage ring. The latter endeavour is conducted in close collaboration between
Deutsches Elektronen-Synchrotron (DESY), Karlsruhe Institute of Technology
(KIT) and Helmholtz Institute Jena (HIJ). In the cSTART project at KIT, a
compact storage ring optimized for short bunches and suitable to accept
LPA-based electron bunches is in preparation. In this conference contribution
we will introduce the 50 MeV LPA-based injector and give an overview about the
project goals. The key parameters of the plasma injector will be presented.
Finally, the current status of the project will be summarized
Status Report of the 50 MeV LPA-Based Injector at ATHENA for a Compact Storage Ring
Laser-based plasma accelerators (LPA) have successfully demonstrated their capability to generate high-energy electron beams with intrinsically short bunch lengths and high peak currents at a setup with a small footprint. These properties make them attractive drivers for a broad range of different applications including injectors for rf-driven, ring-based light sources. In close collaboration the Deutsches Elektronen-Synchrotron (DESY), the Karlsruhe Institute of Technology (KIT) and the Helmholtz Institute Jena aim to develop a 50 MeV plasma injector and demonstrate the injection into a compact storage ring. This storage ring will be built within the project cSTART at KIT. As part of the ATHENA (Accelerator Technology HElmholtz iNfrAstructure) project, DESY will design, setup and operate a 50 MeV plasma injector prototype for this endeavor. This contribution gives a status update of the 50 MeV LPA-based injector and presents a first layout of the prototype design at DESY in Hamburg
- …