113 research outputs found
Clinical implications and utility of field cancerization
Cancer begins with multiple cumulative epigenetic and genetic alterations that sequencially transform a cell, or a group of cells in a particular organ. The early genetic events might lead to clonal expansion of pre-neoplastic daughter cells in a particular tumor field. Subsequent genomic changes in some of these cells drive them towards the malignant phenotype. These transformed cells are diagnosed histopathologically as cancers owing to changes in cell morphology. Conceivably, a population of daughter cells with early genetic changes (without histopathology) remain in the organ, demonstrating the concept of field cancerization. With present technological advancement, including laser capture microdisection and high-throughput genomic technologies, carefully designed studies using appropriate control tissue will enable identification of important molecular signatures in these genetically transformed but histologically normal cells. Such tumor-specific biomarkers should have excellent clinical utility. This review examines the concept of field cancerization in several cancers and its possible utility in four areas of oncology; risk assessment, early cancer detection, monitoring of tumor progression and definition of tumor margins
Multiple strand displacement amplification of mitochondrial DNA from clinical samples
<p>Abstract</p> <p>Background</p> <p>Whole genome amplification (WGA) methods allow diagnostic laboratories to overcome the common problem of insufficient DNA in patient specimens. Further, body fluid samples useful for cancer early detection are often difficult to amplify with traditional PCR methods. In this first application of WGA on the entire human mitochondrial genome, we compared the accuracy of mitochondrial DNA (mtDNA) sequence analysis after WGA to that performed without genome amplification. We applied the method to a small group of cancer cases and controls and demonstrated that WGA is capable of increasing the yield of starting DNA material with identical genetic sequence.</p> <p>Methods</p> <p>DNA was isolated from clinical samples and sent to NIST. Samples were amplified by PCR and those with no visible amplification were re-amplified using the Multiple Displacement Amplificaiton technique of whole genome amplification. All samples were analyzed by mitochip for mitochondrial DNA sequence to compare sequence concordance of the WGA samples with respect to native DNA. Real-Time PCR analysis was conducted to determine the level of WGA amplification for both nuclear and mtDNA.</p> <p>Results</p> <p>In total, 19 samples were compared and the concordance rate between WGA and native mtDNA sequences was 99.995%. All of the cancer associated mutations in the native mtDNA were detected in the WGA amplified material and heteroplasmies in the native mtDNA were detected with high fidelity in the WGA material. In addition to the native mtDNA sequence present in the sample, 13 new heteroplasmies were detected in the WGA material.</p> <p>Conclusion</p> <p>Genetic screening of mtDNA amplified by WGA is applicable for the detection of cancer associated mutations. Our results show the feasibility of this method for: 1) increasing the amount of DNA available for analysis, 2) recovering the identical mtDNA sequence, 3) accurately detecting mtDNA point mutations associated with cancer.</p
The pseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation
BACKGROUND: Nuclear mitochondrial pseudogenes (numts) are a potential source of contamination during mitochondrial DNA PCR amplification. This possibility warrants careful experimental design and cautious interpretation of heteroplasmic results. RESULTS: Here we report the cloning and sequencing of numts loci, amplified from human tissue and rho-zero (ρ(0)) cells (control) with primers known to amplify the mitochondrial genome. This paper is the first to fully sequence 46 paralogous nuclear DNA fragments that represent the entire mitochondrial genome. This is a surprisingly small number due primarily to the primer sets used in this study, because prior to this, BLAST searches have suggested that nuclear DNA harbors between 400 to 1,500 paralogous mitochondrial DNA fragments. Our results indicate that multiple numts were amplified simultaneously with the mitochondrial genome and increased the load of pseudogene signal in PCR reactions. Further, the entire mitochondrial genome was represented by multiple copies of paralogous nuclear sequences. CONCLUSION: These findings suggest that mitochondrial genome disease-associated biomarkers must be rigorously authenticated to preclude any affiliation with paralogous nuclear pseudogenes. Importantly, the common perception that mitochondrial template "swamps" numts loci precluding detectable amplification, depends on the region of the mitochondrial genome targeted by the PCR reaction and the number of pseudogene loci that may co-amplify. Cloning and relevant sequencing data will facilitate the correct interpretation. This is the first complete, wet-lab characterization of numts that represent the entire mitochondrial genome
Facile whole mitochondrial genome resequencing from nipple aspirate fluid using MitoChip v2.0
<p>Abstract</p> <p>Background</p> <p>Mutations in the mitochondrial genome (mtgenome) have been associated with many disorders, including breast cancer. Nipple aspirate fluid (NAF) from symptomatic women could potentially serve as a minimally invasive sample for breast cancer screening by detecting somatic mutations in this biofluid. This study is aimed at 1) demonstrating the feasibility of NAF recovery from symptomatic women, 2) examining the feasibility of sequencing the entire mitochondrial genome from NAF samples, 3) cross validation of the Human mitochondrial resequencing array 2.0 (MCv2), and 4) assessing the somatic mtDNA mutation rate in benign breast diseases as a potential tool for monitoring early somatic mutations associated with breast cancer.</p> <p>Methods</p> <p>NAF and blood were obtained from women with symptomatic benign breast conditions, and we successfully assessed the mutation load in the entire mitochondrial genome of 19 of these women. DNA extracts from NAF were sequenced using the mitochondrial resequencing array MCv2 and by capillary electrophoresis (CE) methods as a quality comparison. Sequencing was performed independently at two institutions and the results compared. The germline mtDNA sequence determined using DNA isolated from the patient's blood (control) was compared to the mutations present in cellular mtDNA recovered from patient's NAF.</p> <p>Results</p> <p>From the cohort of 28 women recruited for this study, NAF was successfully recovered from 23 participants (82%). Twenty two (96%) of the women produced fluids from both breasts. Twenty NAF samples and corresponding blood were chosen for this study. Except for one NAF sample, the whole mtgenome was successfully amplified using a single primer pair, or three pairs of overlapping primers. Comparison of MCv2 data from the two institutions demonstrates 99.200% concordance. Moreover, MCv2 data was 99.999% identical to CE sequencing, indicating that MCv2 is a reliable method to rapidly sequence the entire mtgenome. Four NAF samples contained somatic mutations.</p> <p>Conclusion</p> <p>We have demonstrated that NAF is a suitable material for mtDNA sequence analysis using the rapid and reliable MCv2. Somatic mtDNA mutations present in NAF of women with benign breast diseases could potentially be used as risk factors for progression to breast cancer, but this will require a much larger study with clinical follow up.</p
Population-Sequencing as a Biomarker of Burkholderia mallei and Burkholderia pseudomallei Evolution through Microbial Forensic Analysis
Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations
Performance of mitochondrial DNA mutations detecting early stage cancer
<p>Abstract</p> <p>Background</p> <p>Mutations in the mitochondrial genome (mtgenome) have been associated with cancer and many other disorders. These mutations can be point mutations or deletions, or admixtures (heteroplasmy). The detection of mtDNA mutations in body fluids using resequencing microarrays, which are more sensitive than other sequencing methods, could provide a strategy to measure mutation loads in remote anatomical sites.</p> <p>Methods</p> <p>We determined the mtDNA mutation load in the entire mitochondrial genome of 26 individuals with different early stage cancers (lung, bladder, kidney) and 12 heavy smokers without cancer. MtDNA was sequenced from three matched specimens (blood, tumor and body fluid) from each cancer patient and two matched specimens (blood and sputum) from smokers without cancer. The inherited wildtype sequence in the blood was compared to the sequences present in the tumor and body fluid, detected using the Affymetrix Genechip<sup>® </sup>Human Mitochondrial Resequencing Array 1.0 and supplemented by capillary sequencing for noncoding region.</p> <p>Results</p> <p>Using this high-throughput method, 75% of the tumors were found to contain mtDNA mutations, higher than in our previous studies, and 36% of the body fluids from these cancer patients contained mtDNA mutations. Most of the mutations detected were heteroplasmic. A statistically significantly higher heteroplasmy rate occurred in tumor specimens when compared to both body fluid of cancer patients and sputum of controls, and in patient blood compared to blood of controls. Only 2 of the 12 sputum specimens from heavy smokers without cancer (17%) contained mtDNA mutations. Although patient mutations were spread throughout the mtDNA genome in the lung, bladder and kidney series, a statistically significant elevation of tRNA and ND complex mutations was detected in tumors.</p> <p>Conclusion</p> <p>Our findings indicate comprehensive mtDNA resequencing can be a high-throughput tool for detecting mutations in clinical samples with potential applications for cancer detection, but it is unclear the biological relevance of these detected mitochondrial mutations. Whether the detection of tumor-specific mtDNA mutations in body fluidsy this method will be useful for diagnosis and monitoring applications requires further investigation.</p
Optimization of sequence alignment for simple sequence repeat regions
Abstract Background Microsatellites, or simple sequence repeats (SSRs), are tandemly repeated DNA sequences, including tandem copies of specific sequences no longer than six bases, that are distributed in the genome. SSR has been used as a molecular marker because it is easy to detect and is used in a range of applications, including genetic diversity, genome mapping, and marker assisted selection. It is also very mutable because of slipping in the DNA polymerase during DNA replication. This unique mutation increases the insertion/deletion (INDELs) mutation frequency to a high ratio - more than other types of molecular markers such as single nucleotide polymorphism (SNPs). SNPs are more frequent than INDELs. Therefore, all designed algorithms for sequence alignment fit the vast majority of the genomic sequence without considering microsatellite regions, as unique sequences that require special consideration. The old algorithm is limited in its application because there are many overlaps between different repeat units which result in false evolutionary relationships. Findings To overcome the limitation of the aligning algorithm when dealing with SSR loci, a new algorithm was developed using PERL script with a Tk graphical interface. This program is based on aligning sequences after determining the repeated units first, and the last SSR nucleotides positions. This results in a shifting process according to the inserted repeated unit type. When studying the phylogenic relations before and after applying the new algorithm, many differences in the trees were obtained by increasing the SSR length and complexity. However, less distance between different linage had been observed after applying the new algorithm. Conclusions The new algorithm produces better estimates for aligning SSR loci because it reflects more reliable evolutionary relations between different linages. It reduces overlapping during SSR alignment, which results in a more realistic phylogenic relationship.</p
ReseqChip: Automated integration of multiple local context probe data from the MitoChip array in mitochondrial DNA sequence assembly
<p>Abstract</p> <p>Background</p> <p>The Affymetrix MitoChip v2.0 is an oligonucleotide tiling array for the resequencing of the human mitochondrial (mt) genome. For each of 16,569 nucleotide positions of the mt genome it holds two sets of four 25-mer probes each that match the heavy and the light strand of a reference mt genome and vary only at their central position to interrogate all four possible alleles. In addition, the MitoChip v2.0 carries alternative local context probes to account for known mtDNA variants. These probes have been neglected in most studies due to the lack of software for their automated analysis.</p> <p>Results</p> <p>We provide ReseqChip, a free software that automates the process of resequencing mtDNA using multiple local context probes on the MitoChip v2.0. ReseqChip significantly improves base call rate and sequence accuracy. ReseqChip is available at <url>http://code.open-bio.org/svnweb/index.cgi/bioperl/browse/bioperl-live/trunk/Bio/Microarray/Tools/</url>.</p> <p>Conclusions</p> <p>ReseqChip allows for the automated consolidation of base calls from alternative local mt genome context probes. It thereby improves the accuracy of resequencing, while reducing the number of non-called bases.</p
Following Mitochondrial Footprints through a Long Mucosal Path to Lung Cancer
BACKGROUND:Mitochondrial DNA (mtDNA) mutations are reported in different tumors. However, there is no information on the temporal development of the mtDNA mutations/content alteration and their extent in normal and abnormal mucosa continuously exposed to tobacco smoke in lung cancer patients. METHODOLOGY:We examined the pattern of mtDNA alteration (mtDNA mutation and content index) in 25 airway mucosal biopsies, corresponding tumors and normal lymph nodes obtained from three patients with primary lung cancers. In addition, we examined the pattern of mtDNA mutation in corresponding tumors and normal lymph nodes obtained from eight other patients with primary lung cancers. The entire 16.5 kb mitochondrial genome was sequenced on Affymetrix Mitochip v2.0 sequencing platform in every sample. To examine mtDNA content index, we performed real-time PCR analysis. PRINCIPAL FINDINGS:The airway mucosal biopsies obtained from three lung cancer patients were histopathologically negative but exhibited multiple clonal mtDNA mutations detectable in the corresponding tumors. One of the patients was operated twice for the removal of tumor from the right upper and left lower lobe respectively within a span of two years. Both of these tumors exhibited twenty identical mtDNA mutations. MtDNA content increased significantly (P<0.001) in the lung cancer and all the histologically negative mucosal biopsies except one compared to the control lymph node. CONCLUSIONS/SIGNIFICANCE:Our results document the extent of massive clonal patches that develop in lifetime smokers and ultimately give rise to clinically significant cancers. These observations shed light on the extent of disease in the airway of smokers traceable through mtDNA mutation. MtDNA mutation could be a reliable tool for molecular assessment of respiratory epithelium exposed to continuous smoke as well as disease detection and monitoring. Functional analysis of the pathogenic mtDNA mutations may be useful to understand their role in lung tumorigenesis
Long homopurine•homopyrimidine sequences are characteristic of genes expressed in brain and the pseudoautosomal region
Homo(purine•pyrimidine) sequences (R•Y tracts) with mirror repeat symmetries form stable triplexes that block replication and transcription and promote genetic rearrangements. A systematic search was conducted to map the location of the longest R•Y tracts in the human genome in order to assess their potential function(s). The 814 R•Y tracts with ≥250 uninterrupted base pairs were preferentially clustered in the pseudoautosomal region of the sex chromosomes and located in the introns of 228 annotated genes whose protein products were associated with functions at the cell membrane. These genes were highly expressed in the brain and particularly in genes associated with susceptibility to mental disorders, such as schizophrenia. The set of 1957 genes harboring the 2886 R•Y tracts with ≥100 uninterrupted base pairs was additionally enriched in proteins associated with phosphorylation, signal transduction, development and morphogenesis. Comparisons of the ≥250 bp R•Y tracts in the mouse and chimpanzee genomes indicated that these sequences have mutated faster than the surrounding regions and are longer in humans than in chimpanzees. These results support a role for long R•Y tracts in promoting recombination and genome diversity during evolution through destabilization of chromosomal DNA, thereby inducing repair and mutation
- …