15 research outputs found

    OSSOS VI. Striking Biases in the detection of large semimajor axis Trans-Neptunian Objects

    Get PDF
    The accumulating, but small, set of large semi-major axis trans-Neptunian objects (TNOs) shows an apparent clustering in the orientations of their orbits. This clustering must either be representative of the intrinsic distribution of these TNOs, or else arise as a result of observation biases and/or statistically expected variations for such a small set of detected objects. The clustered TNOs were detected across different and independent surveys, which has led to claims that the detections are therefore free of observational bias. This apparent clustering has led to the so-called "Planet 9" hypothesis that a super-Earth currently resides in the distant solar system and causes this clustering. The Outer Solar System Origins Survey (OSSOS) is a large program that ran on the Canada-France-Hawaii Telescope from 2013--2017, discovering more than 800 new TNOs. One of the primary design goals of OSSOS was the careful determination of observational biases that would manifest within the detected sample. We demonstrate the striking and non-intuitive biases that exist for the detection of TNOs with large semi-major axes. The eight large semi-major axis OSSOS detections are an independent dataset, of comparable size to the conglomerate samples used in previous studies. We conclude that the orbital distribution of the OSSOS sample is consistent with being detected from a uniform underlying angular distribution.Comment: Accepted for publicatio

    OSSOS. IV. DISCOVERY OF A DWARF PLANET CANDIDATE IN THE 9 : 2 RESONANCE WITH NEPTUNE

    Get PDF
    We report the discovery and orbit of a new dwarf planet candidate, 2015 RR245, by the Outer Solar System Origins Survey (OSSOS). The orbit of 2015 RR245 is eccentric (e = 0.586), with a semimajor axis near 82 au, yielding a perihelion distance of 34 au. 2015 RR245 has g - r = 0.59 +/- 0.11 and absolute magnitude H-r = 3.6 +/- 0.1; for an assumed albedo of p(V) = 12%, the object has a diameter of similar to 670. km. Based on astrometric measurements from OSSOS and Pan-STARRS1, we find that 2015 RR245 is securely trapped on ten-megayear timescales in the 9: 2 mean-motion resonance with Neptune. It is the first trans-Neptunian object (TNO) identified in this resonance. On hundred-megayear. timescales, particles in 2015 RR245-like orbits depart and sometimes return to the resonance, indicating that 2015 RR245 likely forms part of the long-lived metastable population of distant TNOs that drift between resonance sticking and actively scattering via gravitational encounters with Neptune. The discovery of a 9: 2 TNO stresses the role of resonances in the long-term evolution of objects in the scattering disk. and reinforces the view that distant resonances are heavily populated in the current solar system. This object further motivates detailed modeling of the transient sticking population.Peer reviewe

    OSSOS. VII. 800+Trans-Neptunian Objects-The Complete Data Release

    Get PDF
    The Outer Solar System Origins Survey (OSSOS), a wide-field imaging program in 2013-2017 with the Canada-France-Hawaii Telescope, surveyed 155 deg(2) of sky to depths of m(r) = 24.1-25.2. We present 838 outer solar system discoveries that are entirely free of ephemeris bias. This increases the inventory of trans-Neptunian objects (TNOs) with accurately known orbits by nearly 50%. Each minor planet has 20-60 Gaia/Pan-STARRS-calibrated astrometric measurements made over 2-5 oppositions, which allows accurate classification of their orbits within the trans-Neptunian dynamical populations. The populations orbiting in mean-motion resonance with Neptune are key to understanding Neptune's early migration. Our 313 resonant TNOs, including 132 plutinos, triple the available characterized sample and include new occupancy of distant resonances out to semimajor axis a similar to 130 au. OSSOS doubles the known population of the nonresonant Kuiper Belt, providing 436 TNOs in this region, all with exceptionally high-quality orbits of a uncertainty sigma(a)Peer reviewe

    A new high-perihelion a ~ 700 AU object in the distant Solar System

    No full text
    International audienceWe report the discovery of a trans-Neptunian object (TNO) plausibly diffusing out of the inner Oort Cloud reservoir. This TNO is on an orbit with q ~ 50 AU, a ~ 700 AU, the largest semi-major axis yet detected for an orbit with perihelion q beyond the q ≤ 38 zone of strong influence of Neptune, exceeding the semi-major axes of (90377) Sedna, 2012 VP113 and 2010 GB174. Such objects are rarely observed. Trans-Neptunian objects with these high orbital perihelia have no confirmed formation mechanism in the present planetary architecture of the Solar System. The orbit of this new TNO can be formed by inward diffusion of objects from a Galactic-tide-dominated population with a ~ 1000-2000 AU; the formation mechanism is highly inefficient, and would require on the order of a hundred times more objects in that population than in the a ~ 700 AU population. We also report colour and light curve measurements of the new TNO with Gemini North and Subaru-HSC. The longitude of the ascending node and argument of perihelion of this TNO's orbit have implications for the hypothesis of a ninth planet

    A new high-perihelion a ~ 700 AU object in the distant Solar System

    No full text
    International audienceWe report the discovery of a trans-Neptunian object (TNO) plausibly diffusing out of the inner Oort Cloud reservoir. This TNO is on an orbit with q ~ 50 AU, a ~ 700 AU, the largest semi-major axis yet detected for an orbit with perihelion q beyond the q ≤ 38 zone of strong influence of Neptune, exceeding the semi-major axes of (90377) Sedna, 2012 VP113 and 2010 GB174. Such objects are rarely observed. Trans-Neptunian objects with these high orbital perihelia have no confirmed formation mechanism in the present planetary architecture of the Solar System. The orbit of this new TNO can be formed by inward diffusion of objects from a Galactic-tide-dominated population with a ~ 1000-2000 AU; the formation mechanism is highly inefficient, and would require on the order of a hundred times more objects in that population than in the a ~ 700 AU population. We also report colour and light curve measurements of the new TNO with Gemini North and Subaru-HSC. The longitude of the ascending node and argument of perihelion of this TNO's orbit have implications for the hypothesis of a ninth planet
    corecore