41 research outputs found

    The mitochondrial transcriptome of the anglerfish Lophius piscatorius

    Get PDF
    Objective Analyze key features of the anglerfish Lophius piscatorius mitochondrial transcriptome based on high-throughput total RNA sequencing. Results We determined the complete mitochondrial DNA and corresponding transcriptome sequences of L. piscatorius. Key features include highly abundant mitochondrial ribosomal RNAs (10–100 times that of mRNAs), and that cytochrome oxidase mRNAs appeared > 5 times more abundant than both NADH dehydrogenase and ATPase mRNAs. Unusual for a vertebrate mitochondrial mRNA, the polyadenylated COI mRNA was found to harbor a 75 nucleotide 3′ untranslated region. The mitochondrial genome expressed several non-canonical genes, including the long noncoding RNAs lncCR-H, lncCR-L and lncCOI. Whereas lncCR-H and lncCR-L mapped to opposite strands in a non-overlapping organization within the control region, lncCOI appeared novel among vertebrates. We found lncCOI to be a highly abundant mitochondrial RNA in antisense to the COI mRNA. Finally, we present the coding potential of a humanin-like peptide within the large subunit ribosomal RNA.publishedVersio

    Intron size minimisation in teleosts

    Get PDF
    Background: Spliceosomal introns are parts of primary transcripts that are removed by RNA splicing. Although introns apparently do not contribute to the function of the mature transcript, in vertebrates they comprise the majority of the transcribed region increasing the metabolic cost of transcription. The persistence of long introns across evolutionary time suggests functional roles that can offset this metabolic cost. The teleosts comprise one of the largest vertebrate clades. They have unusually compact and variable genome sizes and provide a suitable system for analysing intron evolution. Results: We have analysed intron lengths in 172 vertebrate genomes and show that teleost intron lengths are relatively short, highly variable and bimodally distributed. Introns that were long in teleosts were also found to be long in mammals and were more likely to be found in regulatory genes and to contain conserved sequences. Our results argue that intron length has decreased in parallel in a non-random manner throughout teleost evolution and represent a deviation from the ancestral state. Conclusion: Our observations indicate an accelerated rate of intron size evolution in the teleosts and that teleost introns can be divided into two classes by their length. Teleost intron sizes have evolved primarily as a side-effect of genome size evolution and small genomes are dominated by short introns (<256 base pairs). However, a non-random subset of introns has resisted this process across the teleosts and these are more likely have functional roles in all vertebrate clades

    Complete loss of the MHC II pathway in an anglerfish, Lophius piscatorius

    Get PDF
    Genome studies in fish provide evidence for the adaptability of the vertebrate immune system, revealing alternative immune strategies. The reported absence of the major compatibility complex (MHC) class II pathway components in certain species of pipefish (genus Syngnathus) and cod-like fishes (order Gadiformes) is of particular interest. The MHC II pathway is responsible for immunization and defence against extracellular threats through the presentation of exogenous peptides to T helper cells. Here, we demonstrate the absence of all genes encoding MHC II components (CD4, CD74 A/B, and both classical and non-classical MHC II α/β) in the genome of an anglerfish, Lophius piscatorius, indicating loss of the MHC II pathway. By contrast, it has previously been reported that another anglerfish, Antennarius striatus, retains all MHC II genes, placing the loss of MHC II in the Lophius clade to their most recent common ancestor. In the three taxa where MHC II loss has occurred, the gene loss has been restricted to four or five core MHC II components, suggesting that, in teleosts, only these genes have functions that are restricted to the MHC II pathway.publishedVersionPaid Open Acces

    Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    Get PDF
    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F(0) generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F(1) embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring

    Parental micronutrient deficiency distorts liver DNA methylation and expression of lipid genes associated with a fatty-liver-like phenotype in offspring

    Get PDF
    Micronutrient status of parents can affect long term health of their progeny. Around 2 billion humans are affected by chronic micronutrient deficiency. In this study we use zebrafish as a model system to examine morphological, molecular and epigenetic changes in mature offspring of parents that experienced a one-carbon (1-C) micronutrient deficiency. Zebrafish were fed a diet sufficient, or marginally deficient in 1-C nutrients (folate, vitamin B12, vitamin B6, methionine, choline), and then mated. Offspring livers underwent histological examination, RNA sequencing and genome-wide DNA methylation analysis. Parental 1-C micronutrient deficiency resulted in increased lipid inclusion and we identified 686 differentially expressed genes in offspring liver, the majority of which were downregulated. Downregulated genes were enriched for functional categories related to sterol, steroid and lipid biosynthesis, as well as mitochondrial protein synthesis. Differential DNA methylation was found at 2869 CpG sites, enriched in promoter regions and permutation analyses confirmed the association with parental feed. Our data indicate that parental 1-C nutrient status can persist as locus specific DNA methylation marks in descendants and suggest an effect on lipid utilization and mitochondrial protein translation in F1 livers. This points toward parental micronutrients status as an important factor for offspring health and welfare.publishedVersio

    Isolation of mouse Hoxb-3 protein binding sequences: a whole genome approach

    No full text
    published_or_final_versionBiochemistryDoctoralDoctor of Philosoph

    Prolonged treatment with DNMT inhibitors induces distinct effects in promoters and gene-bodies.

    Get PDF
    Treatment with the demethylating drugs 5-azacytidine (AZA) and decitabine (DAC) is now recognised as an effective therapy for patients with Myelodysplastic Syndromes (MDS), a range of disorders arising in clones of hematopoietic progenitor cells. A variety of cell models have been used to study the effect of these drugs on the methylation of promoter regions of tumour suppressor genes, with recent efforts focusing on the ability of these drugs to inhibit DNA methylation at low doses. However, it is still not clear how nano-molar drug treatment exerts its effects on the methylome. In this study, we have characterised changes in DNA methylation caused by prolonged low-dose treatment in a leukemic cell model (SKM-1), and present a genome-wide analysis of the effects of AZA and DAC. At nano-molar dosages, a one-month continuous treatment halved the total number of hypermethylated probes in leukemic cells and our analysis identified 803 candidate regions with significant demethylation after treatment. Demethylated regions were enriched in promoter sequences whereas gene-body CGIs were more resistant to the demethylation process. CGI methylation in promoters was strongly correlated with gene expression but this correlation was lost after treatment. Our results indicate that CGI demethylation occurs preferentially at promoters, but that it is not generally sufficient to modify expression patterns, and emphasises the roles of other means of maintaining cell state

    276 Genome Informatics 14: 276–277 (2003) An Open Source Client-Server System for the Analysis of Affymetrix Microarray Data

    No full text
    Microarray data is rich in nature and can often be used to approach a large number of biological questions. This is especially true when data from a broad range of cell types or tissues can be compared easily. We believe that the current limiting factor in the exploitation of microarray data is not technical, but rather the number of biological questions asked of the data. This is mostly a functio

    Prolonged treatments of AZA or DAC in SKM-1 cells.

    No full text
    <p><b>A</b>, Cell proliferation was assayed using the CellTiter 96 Aqueous One Solution assay kit after treating SKM-1 cells for 7 days with different concentrations of AZA (red dotted line) or DAC (blue dashed line). The percentage of cell proliferation was calculated relative to the rate of proliferation in untreated cells, and obtained from the mean (± SEM) of three independent experiments. <b>B</b>, Probes targeting CGI regions were classified into hyper, intermediate or hypo methylation groups according to their log<sub>2</sub>-ratios obtained from microarray analysis (See materials and methods). Most probes were hypomethylated (>80% in all cases). The number of probes classified as intermediate or hypermethylated were reduced after AZA or DAC treatments. <b>C</b>, Principal Component Analysis (PCA) with data from 4 independent treatments (from 52915 probes selected by within-replicate variance).</p
    corecore