22 research outputs found

    Cooling atomic motion with quantum interference

    Get PDF
    We theoretically investigate the quantum dynamics of the center of mass of trapped atoms, whose internal degrees of freedom are driven in a Λ\Lambda-shaped configuration with the lasers tuned at two-photon resonance. In the Lamb-Dicke regime, when the motional wave packet is well localized over the laser wavelenght, transient coherent population trapping occurs, cancelling transitions at the laser frequency. In this limit the motion can be efficiently cooled to the ground state of the trapping potential. We derive an equation for the center-of-mass motion by adiabatically eliminating the internal degrees of freedom. This treatment provides the theoretical background of the scheme presented in [G. Morigi {\it et al}, Phys. Rev. Lett. {\bf 85}, 4458 (2000)] and implemented in [C.F. Roos {\it et al}, Phys. Rev. Lett. {\bf 85}, 5547 (2000)]. We discuss the physical mechanisms determining the dynamics and identify new parameters regimes, where cooling is efficient. We discuss implementations of the scheme to cases where the trapping potential is not harmonic.Comment: 11 pages, 3 figure

    Quantum Chaos Border for Quantum Computing

    Get PDF
    We study a generic model of quantum computer, composed of many qubits coupled by short-range interaction. Above a critical interqubit coupling strength, quantum chaos sets in, leading to quantum ergodicity of the computer eigenstates. In this regime the noninteracting qubit structure disappears, the eigenstates become complex and the operability of the computer is destroyed. Despite the fact that the spacing between multi-qubit states drops exponentially with the number of qubits nn, we show that the quantum chaos border decreases only linearly with nn. This opens a broad parameter region where the efficient operation of a quantum computer remains possible.Comment: revtex, 4 pages, 5 figures, more details and data adde

    Many particle entanglement in two-component Bose-Einstein Condensates

    Full text link
    We investigate schemes to dynamically create many particle entangled states of a two component Bose-Einstein condensate in a very short time proportional to 1/N where NN is the number of condensate particles. For small NN we compare exact numerical calculations with analytical semiclassical estimates and find very good agreement for N≥50N \geq 50. We also estimate the effect of decoherence on our scheme, study possible scenarios for measuring the entangled states, and investigate experimental imperfections.Comment: 12 pages, 8 figure

    Entangling identical bosons in optical tweezers via exchange interaction

    Full text link
    We first devise a scheme to perform a universal entangling gate via controlled collisions between pairs of atomic qubits trapped with optical tweezers. Second, we present a modification to this scheme to allow the preparation of atomic Bell pairs via selective excitation, suitable for quantum information processing applications that do not require universality. Both these schemes are enabled by the inherent symmetries of identical composite particles, as originally proposed by Hayes et al. Our scheme provides a technique for producing weighted graph states, entangled resources for quantum communication, and a promising approach to performing a "loophole free" Bell test in a single laboratory.Comment: 9 pages, 3 figure

    Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps

    Full text link
    We discuss the experimental feasibility of quantum simulation with trapped ion crystals, using magnetic field gradients. We describe a micro structured planar ion trap, which contains a central wire loop generating a strong magnetic gradient of about 20 T/m in an ion crystal held about 160 \mu m above the surface. On the theoretical side, we extend a proposal about spin-spin interactions via magnetic gradient induced coupling (MAGIC) [Johanning, et al, J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 154009]. We describe aspects where planar ion traps promise novel physics: Spin-spin coupling strengths of transversal eigenmodes exhibit significant advantages over the coupling schemes in longitudinal direction that have been previously investigated. With a chip device and a magnetic field coil with small inductance, a resonant enhancement of magnetic spin forces through the application of alternating magnetic field gradients is proposed. Such resonantly enhanced spin-spin coupling may be used, for instance, to create Schr\"odinger cat states. Finally we investigate magnetic gradient interactions in two-dimensional ion crystals, and discuss frustration effects in such two-dimensional arrangements.Comment: 20 pages, 13 figure

    Decoherence in trapped ions due to polarization of the residual background gas

    Full text link
    We investigate the mechanism of damping and heating of trapped ions associated with the polarization of the residual background gas induced by the oscillating ions themselves. Reasoning by analogy with the physics of surface electrons in liquid helium, we demonstrate that the decay of Rabi oscillations observed in experiments on 9Be+ can be attributed to the polarization phenomena investigated here. The measured sensitivity of the damping of Rabi oscillations with respect to the vibrational quantum number of a trapped ion is also predicted in our polarization model.Comment: 26 pdf pages with 5 figures, http://www.df.ufscar.br/~quantum

    Quantum Kinetic Theory III: Quantum kinetic master equation for strongly condensed trapped systems

    Full text link
    We extend quantum kinetic theory to deal with a strongly Bose-condensed atomic vapor in a trap. The method assumes that the majority of the vapor is not condensed, and acts as a bath of heat and atoms for the condensate. The condensate is described by the particle number conserving Bogoliubov method developed by one of the authors. We derive equations which describe the fluctuations of particle number and phase, and the growth of the Bose-Einstein condensate. The equilibrium state of the condensate is a mixture of states with different numbers of particles and quasiparticles. It is not a quantum superposition of states with different numbers of particles---nevertheless, the stationary state exhibits the property of off-diagonal long range order, to the extent that this concept makes sense in a tightly trapped condensate.Comment: 3 figures submitted to Physical Review

    Many body physics from a quantum information perspective

    Full text link
    The quantum information approach to many body physics has been very successful in giving new insight and novel numerical methods. In these lecture notes we take a vertical view of the subject, starting from general concepts and at each step delving into applications or consequences of a particular topic. We first review some general quantum information concepts like entanglement and entanglement measures, which leads us to entanglement area laws. We then continue with one of the most famous examples of area-law abiding states: matrix product states, and tensor product states in general. Of these, we choose one example (classical superposition states) to introduce recent developments on a novel quantum many body approach: quantum kinetic Ising models. We conclude with a brief outlook of the field.Comment: Lectures from the Les Houches School on "Modern theories of correlated electron systems". Improved version new references adde

    Speeding up the spatial adiabatic passage of matter waves in optical microtraps by optimal control

    Full text link
    We numerically investigate the performance of atomic transport in optical microtraps via the so called spatial adiabatic passage technique. Our analysis is carried out by means of optimal control methods, which enable us to determine suitable transport control pulses. We investigate the ultimate limits of the optimal control in speeding up the transport process in a triple well configuration for both a single atomic wave packet and a Bose-Einstein condensate within a regime of experimental parameters achievable with current optical technology.Comment: 17 pages, 14 figure

    Nonlinear matter wave dynamics with a chaotic potential.

    Get PDF
    We consider the case of a cubic nonlinear Schrödinger equation with an additional chaotic potential, in the sense that such a potential produces chaotic dynamics in classical mechanics. We derive and describe an appropriate semiclassical limit to such a nonlinear Schrödinger equation, using a semiclassical interpretation of the Wigner function, and relate this to the hydrodynamic limit of the Gross-Pitaevskii equation used in the context of Bose-Einstein condensation. We investigate a specific example of a Gross-Pitaevskii equation with such a chaotic potential, the one-dimensional δ-kicked harmonic oscillator, and its semiclassical limit, discovering in the process an interesting interference effect, where increasing the strength of the repulsive nonlinearity promotes localization of the wave function. We explore the feasibility of an experimental realization of such a system in a Bose-Einstein condensate experiment, giving a concrete proposal of how to implement such a configuration, and considering the problem of condensate depletion
    corecore