1,024 research outputs found

    Linguistics

    Get PDF
    Contains research objectives and reports on one research project.National Science Foundation (Grant G-7364)National Science Foundation (Grant G-13903

    Spectral statistics of random geometric graphs

    Get PDF
    We use random matrix theory to study the spectrum of random geometric graphs, a fundamental model of spatial networks. Considering ensembles of random geometric graphs we look at short range correlations in the level spacings of the spectrum via the nearest neighbour and next nearest neighbour spacing distribution and long range correlations via the spectral rigidity Delta_3 statistic. These correlations in the level spacings give information about localisation of eigenvectors, level of community structure and the level of randomness within the networks. We find a parameter dependent transition between Poisson and Gaussian orthogonal ensemble statistics. That is the spectral statistics of spatial random geometric graphs fits the universality of random matrix theory found in other models such as Erdos-Renyi, Barabasi-Albert and Watts-Strogatz random graph.Comment: 19 pages, 6 figures. Substantially updated from previous versio

    Isospectral domains with mixed boundary conditions

    Full text link
    We construct a series of examples of planar isospectral domains with mixed Dirichlet-Neumann boundary conditions. This is a modification of a classical problem proposed by M. Kac.Comment: 9 figures. Statement of Theorem 5.1 correcte

    Transverse instability for non-normal parameters

    Full text link
    We consider the behaviour of attractors near invariant subspaces on varying a parameter that does not preserve the dynamics in the invariant subspace but is otherwise generic, in a smooth dynamical system. We refer to such a parameter as ``non-normal''. If there is chaos in the invariant subspace that is not structurally stable, this has the effect of ``blurring out'' blowout bifurcations over a range of parameter values that we show can have positive measure in parameter space. Associated with such blowout bifurcations are bifurcations to attractors displaying a new type of intermittency that is phenomenologically similar to on-off intermittency, but where the intersection of the attractor by the invariant subspace is larger than a minimal attractor. The presence of distinct repelling and attracting invariant sets leads us to refer to this as ``in-out'' intermittency. Such behaviour cannot appear in systems where the transverse dynamics is a skew product over the system on the invariant subspace. We characterise in-out intermittency in terms of its structure in phase space and in terms of invariants of the dynamics obtained from a Markov model of the attractor. This model predicts a scaling of the length of laminar phases that is similar to that for on-off intermittency but which has some differences.Comment: 15 figures, submitted to Nonlinearity, the full paper available at http://www.maths.qmw.ac.uk/~eo

    Regular quantum graphs

    Full text link
    We introduce the concept of regular quantum graphs and construct connected quantum graphs with discrete symmetries. The method is based on a decomposition of the quantum propagator in terms of permutation matrices which control the way incoming and outgoing channels at vertex scattering processes are connected. Symmetry properties of the quantum graph as well as its spectral statistics depend on the particular choice of permutation matrices, also called connectivity matrices, and can now be easily controlled. The method may find applications in the study of quantum random walks networks and may also prove to be useful in analysing universality in spectral statistics.Comment: 12 pages, 3 figure

    On the rate of quantum ergodicity in Euclidean billiards

    Full text link
    For a large class of quantized ergodic flows the quantum ergodicity theorem due to Shnirelman, Zelditch, Colin de Verdi\`ere and others states that almost all eigenfunctions become equidistributed in the semiclassical limit. In this work we first give a short introduction to the formulation of the quantum ergodicity theorem for general observables in terms of pseudodifferential operators and show that it is equivalent to the semiclassical eigenfunction hypothesis for the Wigner function in the case of ergodic systems. Of great importance is the rate by which the quantum mechanical expectation values of an observable tend to their mean value. This is studied numerically for three Euclidean billiards (stadium, cosine and cardioid billiard) using up to 6000 eigenfunctions. We find that in configuration space the rate of quantum ergodicity is strongly influenced by localized eigenfunctions like bouncing ball modes or scarred eigenfunctions. We give a detailed discussion and explanation of these effects using a simple but powerful model. For the rate of quantum ergodicity in momentum space we observe a slower decay. We also study the suitably normalized fluctuations of the expectation values around their mean, and find good agreement with a Gaussian distribution.Comment: 40 pages, LaTeX2e. This version does not contain any figures. A version with all figures can be obtained from http://www.physik.uni-ulm.de/theo/qc/ (File: http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp97-8.ps.gz) In case of any problems contact Arnd B\"acker (e-mail: [email protected]) or Roman Schubert (e-mail: [email protected]

    Affective iconic words benefit from additional sound–meaning integration in the left amygdala

    Get PDF
    Recent studies have shown that a similarity between sound and meaning of a word (i.e., iconicity) can help more readily access the meaning of that word, but the neural mechanisms underlying this beneficial role of iconicity in semantic processing remain largely unknown. In an fMRI study, we focused on the affective domain and examined whether affective iconic words (e.g., high arousal in both sound and meaning) activate additional brain regions that integrate emotional information from different domains (i.e., sound and meaning). In line with our hypothesis, affective iconic words, compared to their non‐iconic counterparts, elicited additional BOLD responses in the left amygdala known for its role in multimodal representation of emotions. Functional connectivity analyses revealed that the observed amygdalar activity was modulated by an interaction of iconic condition and activations in two hubs representative for processing sound (left superior temporal gyrus) and meaning (left inferior frontal gyrus) of words. These results provide a neural explanation for the facilitative role of iconicity in language processing and indicate that language users are sensitive to the interaction between sound and meaning aspect of words, suggesting the existence of iconicity as a general property of human language

    Semiclassical measures and the Schroedinger flow on Riemannian manifolds

    Full text link
    In this article we study limits of Wigner distributions (the so-called semiclassical measures) corresponding to sequences of solutions to the semiclassical Schroedinger equation at times scales αh\alpha_{h} tending to infinity as the semiclassical parameter hh tends to zero (when αh=1/h\alpha _{h}=1/h this is equivalent to consider solutions to the non-semiclassical Schreodinger equation). Some general results are presented, among which a weak version of Egorov's theorem that holds in this setting. A complete characterization is given for the Euclidean space and Zoll manifolds (that is, manifolds with periodic geodesic flow) via averaging formulae relating the semiclassical measures corresponding to the evolution to those of the initial states. The case of the flat torus is also addressed; it is shown that non-classical behavior may occur when energy concentrates on resonant frequencies. Moreover, we present an example showing that the semiclassical measures associated to a sequence of states no longer determines those of their evolutions. Finally, some results concerning the equation with a potential are presented.Comment: 18 pages; Theorems 1,2 extendend to deal with arbitrary time-scales; references adde

    Binary Tree Approach to Scaling in Unimodal Maps

    Full text link
    Ge, Rusjan, and Zweifel (J. Stat. Phys. 59, 1265 (1990)) introduced a binary tree which represents all the periodic windows in the chaotic regime of iterated one-dimensional unimodal maps. We consider the scaling behavior in a modified tree which takes into account the self-similarity of the window structure. A non-universal geometric convergence of the associated superstable parameter values towards a Misiurewicz point is observed for almost all binary sequences with periodic tails. There are an infinite number of exceptional sequences, however, which lead to superexponential scaling. The origin of such sequences is explained.Comment: 25 pages, plain Te

    From limit cycles to strange attractors

    Full text link
    We define a quantitative notion of shear for limit cycles of flows. We prove that strange attractors and SRB measures emerge when systems exhibiting limit cycles with sufficient shear are subjected to periodic pulsatile drives. The strange attractors possess a number of precisely-defined dynamical properties that together imply chaos that is both sustained in time and physically observable.Comment: 27 page
    corecore