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Abstract – We use random matrix theory to study the spectrum of random geometric graphs,
a fundamental model of spatial networks. Considering ensembles of random geometric graphs we
look at short range correlations in the level spacings of the spectrum via the nearest neighbour and
next nearest neighbour spacing distribution and long range correlations via the spectral rigidity
∆3 statistic. These correlations in the level spacings give information about localisation of eigen-
vectors, level of community structure and the level of randomness within the networks. We find
a parameter dependent transition between Poisson and Gaussian orthogonal ensemble statistics.
That is the spectral statistics of spatial random geometric graphs fits the universality of random
matrix theory found in other models such as Erdős-Rényi, Barabási-Albert and Watts-Strogatz
random graphs.

Introduction. – Many physical systems can be stud-1

ied using graph models consisting of pairs of nodes con-2

nected together via links or edges [1]. From information3

flow in communications and transport infrastructures, to4

social interactions, biological organisms and semantics, a5

varied array of systems can all be modelled and studied6

in terms of complex networks [2] (see Ref. [3] for an intro-7

duction).8

One way of studying these systems is to randomly gen-9

erate or synthesize graph topologies which reproduce the10

interesting features or structure one is interested in. These11

models can be studied analytically or ensembles created12

which can be analysed numerically either directly or fed13

into larger simulation software packages. Several random14

graph models have been created for this purpose such15

as the Erdős-Rényi (E-R) random graph model [4], the16

Barabási-Albert scale-free network model (B-A) [5], the17

Watts-Strogatz small-world network model (W-S) [6] and18

the random geometric graph (RGG) [7–9] which we focus19

on here (see figure (1)).20

Recently, spectral graph theory has provided the vehicle21

with which random matrix theory (RMT) can be applied22

to study statistics of the graph spectrum. Like in tradi-23

tional spectroscopy, one can then infer structural proper-24

ties of complex networks. Many types of random graph25

models have been analysed, however, the ubiquitous and26

fundamental class of geometric graphs which are the sim-27

Fig. 1: A random geometric graph. Here we have illustrated a
random geometric graph which consists of 103 nodes uniformly
distributed onto the two-dimensional unit torus (blue discs).
These nodes are connected by edges (black lines) when they
are within a range of 0.1 of each other.

plest models of spatial networks [10] has yet to be studied 28

using the RMT framework. 29

A geometric graph is a spatially embedded network in 30

which all nodes have a well defined location within a given 31

geometric domain. Thus, geometry structures the net- 32

work while greatly affecting its connectivity properties. 33
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Indeed, many real-world networks such as transportation34

networks, the Internet, mobile phone networks, power35

grids, social networks and neural networks all have a fun-36

damental spatial element to them (see [10] for a survey).37

In this first foray into the spectral properties of geomet-38

ric graphs using RMT, we specifically focus on the well39

studied unit-disk RGG model [7–9]. It is already known40

that the spectrum of RGGs is very different to the other41

random graph models mentioned above in that the appear-42

ance of particular sub-graphs give rise to multiple repeated43

eigenvalues [11, 12]. This in turn causes sharp peaks to44

appear in the adjacency matrix spectral density (see fig-45

ure (2)). Whilst the appearance of the sharp peaks has46

been studied, the remaining part of the spectrum remains47

largely unexplored. RMT will allow us to study the spec-48

trum of RGGs and compare with previous results related49

to other models.50

RMT has been applied to a variety of complex net-51

works. Graph matrices (e.g. adjacency, Laplacian) are52

first extracted from empirical data or generated from pre-53

scribed algorithms. These are then analysed by looking54

at the inter-eigenvalue distances (so called level spacings).55

In Ref. [13] RMT was applied to the study of biological56

networks where the spectrum of a yeast protein-protein57

interaction network and a yeast metabolic network were58

studied. Remarkably, the statistics of the level spacings59

were very similar to those of matrices whose entries are60

Gaussian distributed random variables; the Gaussian or-61

thogonal ensemble (GOE) statistics of RMT. After intro-62

ducing a modular structure via the removal of particular63

edges in these biological networks, the level spacing statis-64

tics changed from GOE to being Poisson distributed. Fol-65

lowing this discovery, E-R random graphs were analysed66

in Ref. [14]. In E-R random graphs each node is connected67

to every other with a given probability p. GOE statistics68

were observed for highly connected E-R graphs experienc-69

ing a transition to Poisson statistics for smaller values of70

p. Since these numerical discoveries, a local semi-circle71

law, which states that the spectral density of GOE ma-72

trices is close to Wigner’s semicircle distribution on scales73

containing just more than one eigenvalue, was proven for74

E-R graphs under the restriction pN → ∞ (with at least75

logarithmic speed in N) [15]. The latter was also used76

to prove the presence of GOE statistics in the level spac-77

ings of E-R graphs under these conditions [16]. In fact,78

the RMT framework has been useful in manifold applica-79

tions, ranging from differentiating between cancerous and80

healthy protein networks [17], to studying Anderson locali-81

sation in complex networks [18,19]. Further use of RMT in82

complex networks has focused on the universality proper-83

ties of these GOE statistics across different random graph84

models [20–24]. An overview of the relationship between85

complex networks ( with specific reference to biological86

networks) and random matrix theory can be found in Ref.87

[25]. E-R, B-A and W-S have all been studied and similar88

GOE statistics have been found despite the fact that the89

spectral densities themselves are very different [26].90

Fig. 2: Here we illustrate the adjacency matrix spectral den-
sity calculated from an ensemble of 104, 103 node RGGs with
connection radius 0.1 (a) and 0.3 (b). We note the sharp peak
in the spectrum at −1 caused by the appearance of particular
symmetric motifs in RGGs.

In this paper we apply for the first time the RMT frame- 91

work to geometric graphs. We first describe the model 92

then provide background to aid in the understanding the 93

RMT framework that we will employ. This is subsequently 94

applied numerically to investigate the short-range correla- 95

tions in the level spacings via the nearest neighbour spac- 96

ing distribution (NNSD) and the next-nearest neighbour 97

spacing distribution (nNNSD) of the spectra. These short- 98

range correlation statistics encode information about com- 99

munity structure, connectivity and localisation which has 100

applications to the Anderson metal insulator transition in 101

networks [19]. We then look at the spectral rigidity in or- 102

der to investigate the long range correlations of the RGG 103

spectra via the ∆3 statistic. These long-range correlations 104

and the ∆3 statistic give a measure of the amount of ran- 105

domness in the connections [22,27]. 106

Model. – In a RGG the nodes are distributed ran- 107

domly throughout a given domain and the edges are de- 108

termined by the locations of the nodes, see for example 109

Refs. [8] and [9] for introductions. RGGs find partic- 110

ular use in modelling spatial networks such as wireless 111

networks [28–31], epidemic spreading [32–34], city growth 112

[35], power grids [36] and protein-protein interaction net- 113

works [37] for example. There has also been recent interest 114

in studying the properties of RGGs like synchronisation 115
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[38, 39], consensus dynamics [40], connectivity properties116

[41] and spectral properties [11,12].117

We study RGGs on the unit torus by uniformly dis-118

tributing N nodes in the unit square and connecting them119

with an edge when they are within a given range r of each120

other, using periodic boundary conditions. See figure (1)121

for an illustration of a particular realisation with r = 0.1.122

We then extract the N × N adjacency matrix A of the123

RGG which has entries aij = 1 when there is a connection124

between nodes i and j and zero otherwise. A is a type125

of Euclidean random matrix which are often studied in126

random matrix theory (RMT) [42]. An N ×N Euclidean127

random matrix has entries aij which are given by a de-128

terministic function f(xi,xj) of the locations xi,xj of N129

randomly distributed points. In our RGGs we have130

f(xi,xj) :=

{
1 ||xi − xj || ≤ r
0 ||xi − xj || > r

(1)

The resulting adjacency matrix A when using Eq.(1) is131

real and symmetric hence its spectrum consists of real132

eigenvalues λi, i = 1, .., N and λ1 ≤ λ2 ≤ ... ≤ λN . We133

study A as the spectrum of a network encodes valuable134

information about the underlying topology [43]. In Refs.135

[11] and [12] it is noted that the ensemble averaged spec-136

tral density ρ(λ) of RGGs consists of sharp peaks at in-137

teger values (in Ref. [11] the related graph Laplacian is138

studied) caused by the appearance of particular subgraphs139

whose nodes have the same adjacencies called symmetric140

motifs (see figure (2) for an illustration of this). This phe-141

nomenon is not commonly found in non-spatial network142

models. In Ref. [11] they refer to these peaks in the spec-143

tral density as the discrete part and the remainder as the144

continuous part. Here we statistically analyse the contin-145

uous part of the spectral density using RMT.146

As the parameter r is varied the properties of the RGG147

change also. On a microscopic scale the mean degree of148

the nodes is proportional to r2 whilst macroscopically the149

graph can be disconnected for small r and connected as150

r increases. As r increases further every node will con-151

nect to every other and the RGG becomes the complete152

graph with trivial spectrum (N − 1)1, (−1)N−1. We look153

at a range of values of r from relatively small (0.03) and154

likely to contain many disconnected components to rela-155

tively large (0.4) and likely to consist of one connected156

component in order to assess how variation of this pa-157

rameter affects the spectral spacing statistics. See figure158

4.(b) below for how the probability of obtaining a single159

connected component (Pfc) depends on r.160

Random matrix theory. – Wigner first developed161

RMT to study the statistics of eigenvalue spectra of com-162

plex quantum systems, see Refs. [44] and [45] for reviews163

and introductions to the subject. It has since been applied164

to many other types of complex systems [44]. In order to165

analyse the statistics the spectrum has to be unfolded to166

create a constant level density [44, 45]. Examples of the167

spectral densities which we will be unfolding are illustrated168

Fig. 3: Cumulative spectral density. Here the cumulative mean
spectral function is illustrated (blue), calculated from an en-
semble of 104, 103 node RGGs with connection radius 0.1 along
with the cumulative spectral density of a single RGG (red).

in figure 2. To unfold the spectrum we firstly consider the 169

spectral function which for a given energy E is defined as 170

S(E) =

N∑
i=1

δ(E − λi). (2)

The corresponding cumulative spectral function counts 171

how many eigenvalues there are less than or equal to E 172

η(E) =

∫ E

−∞
S(x)dx =

N∑
i=1

Θ(E − λi). (3)

The unfolded eigenvalues are then defined in terms of the 173

cumulative mean spectral function 174

λi = 〈η(E)〉|E=λi , (4)

where 〈...〉 signifies a mean value. An analytical form of 175

〈η(λ)〉 is often unobtainable so we use an ensemble average 176

to calculate the mean and then perform the unfolding. See 177

figure 3 for an illustration of 〈η(λ)〉. 178

Once a spectrum has been unfolded we can look at the 179

spacing statistics. The nearest neighbour spacings are de- 180

fined as, 181

si = λi+1 − λi. (5)

Due to the unfolding process the expected value is 〈s〉 182

is unity irrespective of the spectral density ρ(λ), but the 183

NNSD P (s) is not unique. For an uncorrelated sequence of 184

points the spacings distribution follows Poisson statistics, 185

i.e. 186

Ppo(s) = e−s. (6)

In the case of GOE statistics there are correlations be- 187

tween eigenvalues. A good approximation to the NNSD of 188

GOE matrices is given by the Wigner surmise 189

PGOE(s) ' π

2
se−

πs2

4 . (7)

Eq.(7) is exact in the case of 2× 2 matrices and provides 190

a good approximation for larger matrices (see Ref. [45] 191
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figure 1.5). The Brody distribution was introduced as a192

way of interpolating between the two distributions [46]193

Pβ(s) = (β + 1)αsβe−αs
β+1

, (8)

where194

α = Γ

(
β + 2

β + 1

)β+1

, (9)

Γ() is the Gamma function. β = 0 corresponds to the Pois-195

son statistics Eq.(6) whilst β = 1 to the Wigner surmise196

Eq.(7). We stress that there is no physical significance197

to the parameter β in the Brody distribution but it has198

been noted that it captures the transition from Poisson to199

GOE statistics rather well [47]. Furthermore the Brody200

distribution is frequently used in the study of complex201

networks to measure the transition between and mixture202

of GOE and Poisson statistics [14,18,21–23,48]. Hence we203

use it here for comparison.204

Nearest neighbour spacings. – We calculated the205

NNSD P (s) from an ensemble of RGGs at various values206

of the connection radius r. To obtain P (s) we firstly cal-207

culate the spectrum of an individual RGG. This is then208

unfolded to remove the system specific effects and the si209

are extracted. This process is performed for an ensemble210

of RGGs to obtain P (s), see Ref. [49] for an error analy-211

sis of these statistics. We then fit the Brody distribution212

of Eq.(8) to P (s) and interpret the fit parameter β as a213

measure of similarity to either GOE or Poisson statistics.214

We firstly note that there appears a sharp peak at zero215

in the NNSD of RGGs. This is not due to a degeneracy216

caused by disconnected components, as it appears for con-217

nected RGGs. Rather this is caused by the multiplicity of218

−1 in the spectrum as discussed earlier (figure 2(a)). We219

remove this peak and calculate the NNSD. This is illus-220

trated for a range of r values in figure 4(a) along with the221

Brody distribution fit. Table 1 contains the standard er-222

ror of the best fit estimate along with the χ2 statistic. For223

small values of r the mean degree of the vertices is also rel-224

atively low. At r = 0.03 the mean degree is less than three.225

Hence it is highly likely that the RGGs consist of many226

isolated components (communities) and the spectrum will227

consist of the union of independent spectra. Correspond-228

ingly we see very few correlations in the NNSD illustrated229

by low β at low r values. As r increases the mean degree230

increases quadratically. The isolated components merge231

until the graph consists of a single connected component.232

The probability of obtaining a fully connected RGG at a233

given r value (Pfc) was calculated numerically and is also234

illustrated in figure 4(b). We see that as Pfc transitions235

from zero to one we observe a transition from Poisson to236

GOE statistics in the NNSD.237

In Ref. [13] GOE statistics in the NNSD of a complex238

network is interpreted as indicative of a lack of modular239

or community structure, Poisson statistics being found in240

highly modular networks. Furthermore the NNSD is also241

Fig. 4: Nearest neighbour spacings of unfolded eigenvalues.
Here the NNSD is numerically calculated from an ensemble of
104, 103 node RGGs and illustrated for a range of connection
values in (a) along with the Brody distribution fit (lines) along
with the NNSD for Poisson and GOE statistics. In (b) we show
the best fit parameter β to the NNSD for a range of r values
showing the transition from Poisson (β = 0) to GOE (β = 1)
(blue dots) along with the probability of full connectivity Pfc

calculated from ensembles of 104 RGGs (green stars).

studied in terms of the Anderson metal-insulator transi- 242

tion of localised to extended eigenstates in complex net- 243

works. GOE statistics are characteristic of extended eigen- 244

states whilst Poisson statistics indicate localisation [19]. 245

In RGGs for small r the eigenstates will be localised on 246

the disconnected components. 247

An additional statistic used to study complex networks 248

[21] is the next nearest neighbour spacings of the unfolded 249

eigenvalues s2 where 250

si2 = (λi+2 − λi)/2, (10)

and their distribution P (s2). The factor of two in Eq.(10) 251

again ensures a mean spacing of unity. The nNNSD of the 252

GOE is given by the NNSD of the Gaussian symplectic 253

ensemble of random matrices (GSE) which is well approx- 254
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r β χ2 KS value p value
0.03 0.052± 0.005 0.064 0.192 0.000
0.04 0.198± 0.006 0.050 0.151 0.000
0.05 0.696± 0.008 0.029 0.060 0.000
0.06 0.862± 0.006 0.013 0.031 0.000
0.07 0.912± 0.005 0.010 0.023 0.000
0.08 0.931± 0.004 0.007 0.014 0.000
0.09 0.937± 0.004 0.006 0.010 0.000
0.1 0.942± 0.004 0.005 0.008 0.000
0.2 0.955± 0.002 0.002 0.004 0.155
0.3 0.957± 0.002 0.002 0.001 0.989
0.4 0.958± 0.002 0.001 0.002 0.916

Table 1: In this table is the best parameter fit for β of Eq.(8)
to the numerically obtained nearest neighbour spacing distri-
bution as a function of connection radius r along with the stan-
dard error and corresponding χ2 statistic. Also reported is the
Kolmogorov-Smirnov statistic of the numerically obtained next
nearest neighbour spacing distribution tested against Eq.(11)
along with the corresponding p value.

imated by (see Ref. [45])255

PGSE(s1) ' 218

36π3
s41e
− 64

9π s
2
1 . (11)

We similarly calculated P (s2) for an ensemble of RGGs256

which can be seen in figure 5. We again observed a peak257

at zero caused by the discrete peak in the spectral den-258

sity. After removal of this peak we see that the nNNSD259

of RGGs fits very closely to that of the GOE statistics for260

large r (well connected) given by Eq.(11) but we observe a261

transition away from this as r is decreased and the RGGs262

become disconnected. Table 1 captures this transition263

via the Kolmogorov-Smirnov statistic where we observe264

a sharp drop in the p value between 0.3 and 0.2. GOE265

statistics have been found in the nNNSD of N = 2000266

mean degree 20 (connected) non-spatial (E-R, scale-free267

and small-world) networks [21].268

Spectral rigidity. – So far we have only looked at269

short range correlations in the spectra via the NNSD270

and nNNSD. We will now look at the ∆3 statistic, in-271

troduced in Ref. [50], which measures long range correla-272

tions. ∆3(L, x) measures the least-square deviation of the273

unfolded spectral staircase function η to the line of best274

fit over the interval [x, x+ L].275

∆3(L, x) =
1

L
min
A,B

∫ x+L

x

(
η(λ)−Aλ−B

)2
dλ. (12)

Where η counts how many unfolded eigenvalues there are276

less than or equal to a given value277

η(E) =

N∑
i=1

Θ(E − λi). (13)

Fig. 5: Next nearest neighbour spacings of unfolded eigenval-
ues. Here the nNNSD P (s2) is calculated from an ensemble
of 104, 103 node RGGs for a range of connection values. Also
illustrated is the nNNSD for GOE statistics.

The average over non-intersecting intervals of length L 278

〈...〉x is then the spectral rigidity ∆3(L). 279

〈∆3(L, x)〉x = ∆3(L). (14)

For full correlation where all the spacings are equal, such 280

as that of the harmonic oscillator, the so-called picket 281

fence spectrum there is no dependence on L 282

∆3(L) =
1

12
. (15)

Meanwhile, a fully uncorrelated random sequence gives 283

Poisson statistics in the spacings. In this case there is 284

linear dependence on L given by 285

∆3(L) =
L

15
. (16)

GOE statistics sit in between these two cases with a log- 286

arithmic dependence on L. For large L 287

∆3(L) ' 1

π2

(
ln(2πL) + γ − 5

4
− π2

8

)
, (17)

to order 1/L [50], where γ is Euler’s constant. A useful 288

technique for evaluating ∆3(L, x) has been developed in 289

[51] and outlined in [52] for an experimentally obtained 290

sequence. This involves first shifting the interval [x, x+L] 291

so that its centre is at the origin, i.e. for all the unfolded 292

eigenvalues λi, λi+1, ..., λi+n−1 we shift them (and relabel 293

for convenience) 294

λ̂j = λi−1+j −
(
x+

L

2

)
, (18)

we then have the following 295

∆3(L, x) =
n2

16
− 1

L2

 n∑
j=1

λ̂j

2

+
3n

2L2

 n∑
j=1

λ̂2j
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− 3

L4

 n∑
j=1

λ̂2j

2

+
1

L

 n∑
j=1

(n− 2j + 1)λ̂j

 . (19)

Using Eq.(19) we evaluate ∆3(L), being careful not to296

sample the discrete peaks in the spectral density (this cre-297

ates large jumps in the staircase function). See figure 6298

for an illustration of ∆3(L) for a range of r values. We299

see that the RGGs follow the GOE statistics up to some300

value L0 and then deviate towards Poisson statistics, with301

the value of L0 depending on r. The larger r gives larger302

L0. In Ref. [21] they find very good agreement between303

the ∆3 statistic of the E-R random networks they study304

and the GOE statistic for large values of L, which is to305

be expected given the results in Refs. [15] and [16] on the306

similarity between GOE and well connected E-R graphs.307

Whilst for the scale-free and small-world networks they308

find good agreement up to certain values of L but then309

they see deviations towards Poisson statistics as we have310

observed here in RGGs. Indeed in Ref. [22] they show311

how the value of L0 is related to the amount of commu-312

nity structure within the network by analysing networks313

constructed from randomly connected E-R networks. Fur-314

thermore in Ref. [27] the value L0/N is interpreted as a315

measure of the amount of randomness in the connections316

of the network. This amount of randomness is defined in317

terms of the randomness introduced via a rewiring proba-318

bility in regular degree networks. The higher the rewiring319

probability the larger L0.

Fig. 6: Spectral rigidity of RGGs. Here is illustrated the
spectral rigidity, calculated from an ensemble of 103, 103 node
RGGs with r = 0.05, 0.06, 0.07, 0.08, 0.1, 0.15, 0.2, 0.4 (red cir-
cles, orange thin diamonds, blue diamonds, green triangles (up
facing), red triangles (down facing), orange pentagons, blue
dots, green stars respectively). Also illustrated is the result pre-
dicted by GOE statistics (black line), Poisson statistics (green
dashed line) and the even spacing of the picket fence spectrum
(dot-dash black line).

320

Summary. – Here we have numerically analysed the321

spectrum of the adjacency matrices of spatial networks by322

looking at the random geometric graph model using a ran- 323

dom matrix theory framework. We analysed two statistics 324

which look at short-range correlations in the level spacings 325

of the spectrum; the nearest neighbour distribution and 326

the next nearest neighbour distribution. We also anal- 327

ysed the spectral rigidity via the ∆3 statistic which looks 328

at long-range correlations. These statistics give insight 329

into localisation, community structure and randomness in 330

complex networks. 331

Firstly we found that the relatively common appear- 332

ance of certain symmetric motifs in random geometric 333

graphs appear as a peak at 0 in the nearest neighbour 334

distributions. We also found that despite the determin- 335

istic connection function used (Eq.(1)) random geomet- 336

ric graphs are statistically very similar to certain types 337

of random graph which have been studied like the Erdős- 338

Rényi random graphs, Barabási-Albert scale-free networks 339

and the Watts-Strogatz small-world networks [21] in that 340

the statistics display a parameter dependent transition be- 341

tween the Gaussian orthogonal ensemble of random ma- 342

trices for high r values and closer to Poisson statistics for 343

low r values. In terms of network structure these results 344

are indicative of the connectivity transition from many 345

isolated components at low r values to a single connected 346

component at high values of r. This transition has also 347

been interpreted in terms of the level of randomness in 348

the connections of random graphs [27]. Furthermore in 349

terms of Anderson localisation it is seen in the transition 350

from localised to delocalised eigenstates [19]. 351

The connection function we have studied given by 352

Eq.(1) is fundamental to the study of random geomet- 353

ric graphs [8] but there are other, more general, random 354

connection functions that one can study [41]. Future work 355

will investigate these connection functions and look at how 356

the additional randomness is reflected in particular in the 357

∆3 statistic. For this it will also be important to capture 358

the transition between and mixing of random Poisson and 359

correlated Gaussian orthogonal ensemble statistics. We 360

saw how this transition was captured by the often used 361

Brody distribution Eq.(8) so this could possibly provide 362

a good starting point. Generalising the results in Refs. 363

[15] and [16] could also potentially give analytical answers 364

to these questions. Furthermore it will be interesting to 365

study the spectral properties of other types of networks 366

such as self-similar [53] or even multiplex networks [54,55] 367

using RMT. 368
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