9 research outputs found

    Comparison between Listeria sensu stricto and Listeria sensu lato strains identifies novel determinants involved in infection

    Get PDF
    Abstract The human pathogen L. monocytogenes and the animal pathogen L. ivanovii, together with four other species isolated from symptom-free animals, form the “Listeria sensu stricto” clade. The members of the second clade, “Listeria sensu lato”, are believed to be solely environmental bacteria without the ability to colonize mammalian hosts. To identify novel determinants that contribute to infection by L. monocytogenes, the causative agent of the foodborne disease listeriosis, we performed a genome comparison of the two clades and found 151 candidate genes that are conserved in the Listeria sensu stricto species. Two factors were investigated further in vitro and in vivo. A mutant lacking an ATP-binding cassette transporter exhibited defective adhesion and invasion of human Caco-2 cells. Using a mouse model of foodborne L. monocytogenes infection, a reduced number of the mutant strain compared to the parental strain was observed in the small intestine and the liver. Another mutant with a defective 1,2-propanediol degradation pathway showed reduced persistence in the stool of infected mice, suggesting a role of 1,2-propanediol as a carbon and energy source of listeriae during infection. These findings reveal the relevance of novel factors for the colonization process of L. monocytogenes

    Assessing the risk of second malignancies after modern radiotherapy

    Get PDF
    Recent advances in radiotherapy have enabled the use of different types of particles, such as protons and heavy ions, as well as refinements to the treatment of tumours with standard sources (photons). However, the risk of second cancers arising in long-term survivors continues to be a problem. The long-term risks from treatments such as particle therapy have not yet been determined and are unlikely to become apparent for many years. Therefore, there is a need to develop risk assessments based on our current knowledge of radiation-induced carcinogenesis
    corecore