17 research outputs found

    A longitudinal single-cell atlas of anti-tumour necrosis factor treatment in inflammatory bowel disease

    Get PDF
    Precision medicine in immune-mediated inflammatory diseases (IMIDs) requires a cellular understanding of treatment response. We describe a therapeutic atlas for Crohn’s disease (CD) and ulcerative colitis (UC) following adalimumab, an anti-tumour necrosis factor (anti-TNF) treatment. We generated ~1 million single-cell transcriptomes, organised into 109 cell states, from 216 gut biopsies (41 subjects), revealing disease-specific differences. A systems biology-spatial analysis identified granuloma signatures in CD and interferon (IFN)-response signatures localising to T cell aggregates and epithelial damage in CD and UC. Pretreatment differences in epithelial and myeloid compartments were associated with remission outcomes in both diseases. Longitudinal comparisons demonstrated disease progression in nonremission: myeloid and T cell perturbations in CD and increased multi-cellular IFN signalling in UC. IFN signalling was also observed in rheumatoid arthritis (RA) synovium with a lymphoid pathotype. Our therapeutic atlas represents the largest cellular census of perturbation with the most common biologic treatment, anti-TNF, across multiple inflammatory diseases

    A longitudinal single-cell atlas of anti-tumour necrosis factor treatment in inflammatory bowel disease

    Get PDF
    Precision medicine in immune-mediated inflammatory diseases (IMIDs) requires a cellular understanding of treatment response. We describe a therapeutic atlas for Crohn's disease (CD) and ulcerative colitis (UC) following adalimumab, an anti-tumour necrosis factor (anti-TNF) treatment. We generated ~1 million single-cell transcriptomes, organised into 109 cell states, from 216 gut biopsies (41 subjects), revealing disease-specific differences. A systems biology-spatial analysis identified granuloma signatures in CD and interferon (IFN)-response signatures localising to T cell aggregates and epithelial damage in CD and UC. Pretreatment differences in epithelial and myeloid compartments were associated with remission outcomes in both diseases. Longitudinal comparisons demonstrated disease progression in nonremission: myeloid and T cell perturbations in CD and increased multi-cellular IFN signalling in UC. IFN signalling was also observed in rheumatoid arthritis (RA) synovium with a lymphoid pathotype. Our therapeutic atlas represents the largest cellular census of perturbation with the most common biologic treatment, anti-TNF, across multiple inflammatory diseases.</p

    Constructing custom-made radiotranscriptomic signatures of vascular inflammation from routine CT angiograms: a prospective outcomes validation study in COVID-19

    Get PDF
    Background Direct evaluation of vascular inflammation in patients with COVID-19 would facilitate more efficient trials of new treatments and identify patients at risk of long-term complications who might respond to treatment. We aimed to develop a novel artificial intelligence (AI)-assisted image analysis platform that quantifies cytokine-driven vascular inflammation from routine CT angiograms, and sought to validate its prognostic value in COVID-19.Methods For this prospective outcomes validation study, we developed a radiotranscriptomic platform that uses RNA sequencing data from human internal mammary artery biopsies to develop novel radiomic signatures of vascular inflammation from CT angiography images. We then used this platform to train a radiotranscriptomic signature (C19-RS), derived from the perivascular space around the aorta and the internal mammary artery, to best describe cytokine-driven vascular inflammation. The prognostic value of C19-RS was validated externally in 435 patients (331 from study arm 3 and 104 from study arm 4) admitted to hospital with or without COVID-19, undergoing clinically indicated pulmonary CT angiography, in three UK National Health Service (NHS) trusts (Oxford, Leicester, and Bath). We evaluated the diagnostic and prognostic value of C19-RS for death in hospital due to COVID-19, did sensitivity analyses based on dexamethasone treatment, and investigated the correlation of C19-RS with systemic transcriptomic changes.Findings Patients with COVID-19 had higher C19-RS than those without (adjusted odds ratio [OR] 2middot97 [95% CI 1middot43-6middot27], p=0middot0038), and those infected with the B.1.1.7 (alpha) SARS-CoV-2 variant had higher C19-RS values than those infected with the wild-type SARS-CoV-2 variant (adjusted OR 1middot89 [95% CI 1middot17-3middot20] per SD, p=0middot012). C19-RS had prognostic value for in-hospital mortality in COVID-19 in two testing cohorts (high [&gt;= 6middot99] vs low [&lt;6middot99] C19-RS; hazard ratio [HR] 3middot31 [95% CI 1middot49-7middot33], p=0middot0033; and 2middot58 [1middot10-6middot05], p=0middot028), adjusted for clinical factors, biochemical biomarkers of inflammation and myocardial injury, and technical parameters. The adjusted HR for in-hospital mortality was 8middot24 (95% CI 2middot16-31middot36, p=0middot0019) in patients who received no dexamethasone treatment, but 2middot27 (0middot69-7middot55, p=0middot18) in those who received dexamethasone after the scan, suggesting that vascular inflammation might have been a therapeutic target of dexamethasone in COVID-19. Finally, C19-RS was strongly associated (r=0middot61, p=0middot00031) with a whole blood transcriptional module representing dysregulation of coagulation and platelet aggregation pathways.Interpretation Radiotranscriptomic analysis of CT angiography scans introduces a potentially powerful new platform for the development of non-invasive imaging biomarkers. Application of this platform in routine CT pulmonary angiography scans done in patients with COVID-19 produced the radiotranscriptomic signature C19-RS, a marker of cytokine-driven inflammation driving systemic activation of coagulation and responsible for adverse clinical outcomes, which predicts in-hospital mortality and might allow targeted therapy. Funding Engineering and Physical Sciences Research Council, British Heart Foundation, Oxford BHF Centre of Research Excellence, Innovate UK, NIHR Oxford Biomedical Research Centre, Wellcome Trust, Onassis Foundation.Copyright (c) 2022 The Author(s). Published by Elsevier Ltd.This is an Open Access article under the CC BY 4.0 license

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Insilico analysis of structural and functional impact of SNPs in Pleckstrin

    Full text link
    AbstractPleckstrin (PLEK) gene has been associated with a variety of disorders including autoimmune, inflammatory diseases and cancer. Mutation in this gene has been reported to be associated with autoimmune celiac disease (CD), increased atrophy in multiple sclerosis (MS), obstructive sleep apnea (OSA), abdominal aortic aneurysms, over expression in inflammatory disorders including periodontis, risk for ependymoma relapse, bladder cancer, melanoma, lung, and colorectal cancer revealing the importance of study of the PLEK. PLEK gene has been reported from other animals and therefore we have studied the molecular evolution of the PLEK gene by insilico approaches. Single nucleotide polymorphisms (SNPs), in humans have been reported to cause potential structure-function alteration in proteins. In this study we have tried to understand by insilico approaches the (i) molecular evolution of PLEK and (ii) the impact of potentially deleterious single non-synonymous SNPs (nsSNPs) on the structure and function of Pleckstrin protein. We report for the first time using molecular dynamic simulation (MDS), the impact of SNPrs17035364 and rs3816281 on the structural alterations of Pleckstrin with implications in altering its biological function which may find importance as diagnostic markers.</jats:p

    Synthetic antigen-presenting cells reveal the diversity and functional specialisation of extracellular vesicles composing the fourth signal of T cell immunological synapses

    No full text
    ABSTRACT The T cell Immunological Synapse (IS) is a pivotal hub for the regulation of adaptive immunity by endowing the exchange of information between cells engaged in physical contacts. Beyond the integration of antigen (signal one), co-stimulation (signal two), and cytokines (signal three), the IS facilitates the delivery of T-cell effector assemblies including supramolecular attack particles (SMAPs) and extracellular vesicles (EVs). How these particulate outputs differ among T -cell subsets and how subcellular compartments and signals exchanged at the synapse contribute to their composition is not fully understood. Here we harnessed bead-supported lipid bilayers (BSLBs) as a tailorable and versatile technology for the study of synaptic particle biogenesis and composition in different T-cell subsets, including CART. These synthetic antigen-presenting cells (APCs) facilitated the characterisation of trans-synaptic vesicles (tSV) as a heterogeneous population of EVs comprising among others PM-derived synaptic ectosomes and CD63 + exosomes. We harnessed BSLB to unveil the factors influencing the vesicular release of CD40L, as a model effector, identifying CD40 trans presentation, T-cell activation, ESCRT upregulation/recruitment, antigen density/potency, co-repression by PD-1 ligands, and its processing by ADAM10 as major determinants. Further, BSLB made possible the comparison of microRNA (miR) species associated with tSV and steadily released EVs. Altogether, our data provide evidence for a higher specialisation of tSV which are enriched not only in effector immune receptors but also in miR and RNA-binding proteins. Considering the molecular uniqueness and functional complexity of the tSV output, which is also accompanied by SMAPs, we propose their classification as signal four. Graphical abstract Highlights Bead Supported Lipid Bilayers (BSLB) reconstituting antigen-presenting cells support synapse assembly by T cells and the release of effector particles. BSLB facilitate the dissection of the cellular machineries and synapse composition shaping the released tSV. tSV and their steadily released counterparts have a different composition. TSV show a higher enrichment of effectors including immune receptors, miR, RNA- and other nucleic acid-binding proteins, than EVs

    Activated regulatory T-cells, dysfunctional and senescent T-cells hinder the immunity in pancreatic cancer

    No full text
    Pancreatic cancer has one of the worst prognoses of any human malignancy and leukocyte infiltration is a major prognostic marker of the disease. As current immunotherapies confer negligible survival benefits, there is a need to better characterise leukocytes in pancreatic cancer to identify better therapeutic strategies. In this study, we analysed 32 human pancreatic cancer patients from two independent cohorts. A multi-parameter mass-cytometry analysis was performed on 32,000 T-cells from eight patients. Single-cell RNA sequencing dataset analysis was performed on a cohort of 24 patients. Multiplex immunohistochemistry imaging and spatial analysis were performed to map immune infiltration into the tumour microenvironment. Regulatory T-cell populations demonstrated highly immunosuppressive states with high TIGIT, ICOS and CD39 expression. CD8+ T-cells were found to be either in senescence or an exhausted state. The exhausted CD8 T-cells had low PD-1 expression but high TIGIT and CD39 expression. These findings were corroborated in an independent pancreatic cancer single-cell RNA dataset. These data suggest that T-cells are major players in the suppressive microenvironment of pancreatic cancer. Our work identifies multiple novel therapeutic targets that should form the basis for rational design of a new generation of clinical trials in pancreatic ductal adenocarcinoma

    T-cell trans-synaptic vesicles are distinct and carry greater effector content than constitutive extracellular vesicles

    Get PDF
    The immunological synapse is a molecular hub that facilitates the delivery of three activation signals, namely antigen, costimulation/corepression and cytokines, from antigen-presenting cells (APC) to T cells. T cells release a fourth class of signaling entities, trans-synaptic vesicles (tSV), to mediate bidirectional communication. Here we present bead-supported lipid bilayers (BSLB) as versatile synthetic APCs to capture, characterize and advance the understanding of tSV biogenesis. Specifically, the integration of juxtacrine signals, such as CD40 and antigen, results in the adaptive tailoring and release of tSV, which differ in size, yields and immune receptor cargo compared with steadily released extracellular vesicles (EVs). Focusing on CD40L+ tSV as model effectors, we show that PD-L1 trans-presentation together with TSG101, ADAM10 and CD81 are key in determining CD40L vesicular release. Lastly, we find greater RNA-binding protein and microRNA content in tSV compared with EVs, supporting the specialized role of tSV as intercellular messengers
    corecore