5,840 research outputs found

    Tuning the electrical conductivity of nanotube-encapsulated metallocene wires

    Full text link
    We analyze a new family of carbon nanotube-based molecular wires, formed by encapsulating metallocene molecules inside the nanotubes. Our simulations, that are based on a combination of non-equilibrium Green function techniques and density functional theory, indicate that these wires can be engineered to exhibit desirable magnetotransport effects for use in spintronics devices. The proposed structures should also be resilient to room-temperature fluctuations, and are expected to have a high yield.Comment: 4 pages, 6 figures. Accepted in Physical Review Letter

    A Hierarchically-Organized Phase Diagram near a Quantum Critical Point in URu2Si2

    Get PDF
    A comprehensive transport study, as a function of both temperature and magnetic field in continuous magnetic fields up to 45 T reveals that URu2Si2 possesses all the essential hallmarks of quantum criticality at temperatures above 5.5 K and fields around 38 T, but then collapses into multiple low temperature phases in a hierarchically-organized phase diagram as the temperature is reduced. Although certain generic features of the phase diagram are very similar to those in the cuprates and heavy fermion superconductors, the existence of multiple ordered hysteretic phases near the field-tuned quantum critical point is presently unique to URu2Si2. This finding suggests the existence of many competing order parameters separated by small energy difference in URu2Si2.Comment: 6 pages, twocolum texts, 3 coloured figure included, submitted to PR

    Breakdown of the lattice polaron picture in La0.7Ca0.3MnO3 single crystals

    Full text link
    When heated through the magnetic transition at Tc, La0.7Ca0.3MnO3 changes from a band metal to a polaronic insulator. The Hall constant R_H, through its activated behavior and sign anomaly, provides key evidence for polaronic behavior. We use R_H and the Hall mobility to demonstrate the breakdown of the polaron phase. Above 1.4Tc, the polaron picture holds in detail, while below, the activation energies of both R_H and the mobility deviate strongly from their polaronic values. These changes reflect the presence of metallic, ferromagnetic fluctuations, in the volume of which the Hall effect develops additional contributions tied to quantal phases.Comment: 11 pages, 3 figures, final version to appear in Phys. Rev. B Rapi

    Zero Entropy Interval Maps And MMLS-MMA Property

    Full text link
    We prove that the flow generated by any interval map with zero topological entropy is minimally mean-attractable (MMA) and minimally mean-L-stable (MMLS). One of the consequences is that any oscillating sequence is linearly disjoint with all flows generated by interval maps with zero topological entropy. In particular, the M\"obius function is orthogonal to all flows generated by interval maps with zero topological entropy (Sarnak's conjecture for interval maps). Another consequence is a non-trivial example of a flow having the discrete spectrum.Comment: 12 page

    Structural Interdependence among Colombian Departments

    Get PDF
    This paper advances on the analysis of the structural interdependence among Colombian departments. The results show that Bogotá has a large influence in the other regional economies through its purchasing power. Additionally, it can be observed a centerperiphery pattern in the spatial concentration of the effects of the hypothetical extraction of any territory. From a policy point of view, the main findings reaffirm the role played by Bogotá in the polarization process observed in the regional economies in Colombia in the last years. Any policy action oriented to reduce these regional disparities should take into account that, given the structural interdependence among Colombian departments, new investment in the lagged regions would flow through Bogotá and the major regional economies.Input-output; extraction method; Colombia Classification JEL: R12; R15.

    Shifting Patterns of Nitrogen Excretion and Amino Acid Catabolism Capacity during the Life Cycle of the Sea Lamprey (\u3cem\u3ePetromyzon mariunus\u3c/em\u3e)

    Get PDF
    The jawless fish, the sea lamprey (Petromyzon marinus), spends part of its life as a burrow-dwelling, suspension-feeding larva (ammocoete) before undergoing a metamorphosis into a free swimming, parasitic juvenile that feeds on the blood of fishes. We predicted that animals in this juvenile, parasitic stage have a great capacity for catabolizing amino acids when large quantities of protein-rich blood are ingested. The sixfold to 20-fold greater ammonia excretion rates (JAmm) in postmetamorphic (nonfeeding) and parasitic lampreys compared with ammocoetes suggested that basal rates of amino acid catabolism increased following metamorphosis. This was likely due to a greater basal amino acid catabolizing capacity in which there was a sixfold higher hepatic glutamate dehydrogenase (GDH) activity in parasitic lampreys compared with ammocoetes. Immunoblotting also revealed that GDH quantity was 10-fold and threefold greater in parasitic lampreys than in ammocoetes and upstream migrant lampreys, respectively. Higher hepatic alanine and aspartate aminotransferase activities in the parasitic lampreys also suggested an enhanced amino acid catabolizing capacity in this life stage. In contrast to parasitic lampreys, the twofold larger free amino acid pool in the muscle of upstream migrant lampreys confirmed that this period of natural starvation is accompanied by a prominent proteolysis. Carbamoyl phosphate synthetase III was detected at low levels in the liver of parasitic and upstream migrant lampreys, but there was no evidence of extrahepatic (muscle, intestine) urea production via the ornithine urea cycle. However, detection of arginase activity and high concentrations of arginine in the liver at all life stages examined infers that arginine hydrolysis is an important source of urea. We conclude that metamorphosis is accompanied by a metabolic reorganization that increases the capacity of parasitic sea lampreys to catabolize intermittently large amino acid loads arising from the ingestion of protein rich blood from their prey/hosts. The subsequent generation of energy-rich carbon skeletons can then be oxidized or retained for glycogen and fatty acid synthesis, which are essential fuels for the upstream migratory and spawning phases of the sea lamprey’s life cycle

    Spin-strain coupling in NiCl2-4SC(NH2)2

    Get PDF
    We report results of ultrasonic investigations of the quantum S = 1 spin-chain magnet NiCl2-4SC(NH2)2, also known as DTN, in magnetic fields up to 18 T and temperatures down to 0.3 K. A field H along the [001] direction induces a transition into an antiferromagnetic phase with T(N)max ≈ 1.2 K. Accordingly, at T = 0 there are two quantum critical points at ~2.1 T and at ~12.6 T. The acoustic c33 mode, propagating along the spin chains, shows a pronounced softening close to the phase transition, accompanied by energy dissipation of the sound wave. The H-T phase diagram obtained from our measurements is compared with results from other experimental investigations and the low-temperature acoustic anomalies are traced up to T > T(N). We also report frequency-dependent effects, which open the possibility to investigate the spin fluctuations in the critical regions. Our observations show an important role of the spin-phonon coupling in DTN

    Fiber-coupled Antennas for Ultrafast Coherent Terahertz Spectroscopy in Low Temperatures and High Magnetic Fields

    Get PDF
    For the purposes of measuring the high-frequency complex conductivity of correlated-electron materials at low temperatures and high magnetic fields, a method is introduced for performing coherent time-domain terahertz spectroscopy directly in the cryogenic bore of existing dc and pulsed magnets. Miniature fiber-coupled THz emitters and receivers are constructed and are demonstrated to work down to 1.5 Kelvin and up to 17 Tesla, for eventual use in higher-field magnets. Maintaining the sub-micron alignment between fiber and antenna during thermal cycling, obtaining ultrafast (<200{<200}~fs) optical gating pulses at the end of long optical fibers, and designing highly efficient devices that work well with low-power optical gating pulses constitute the major technical challenges of this project. Data on a YBCO superconducting thin film and a high mobility 2D electron gas is shown.Comment: 8 pages, 9 figure
    • …
    corecore