31 research outputs found

    Melting pot of tick-borne zoonoses : the European hedgehog contributes to the maintenance of various tick-borne diseases in natural cycles urban and suburban areas

    Get PDF
    Background: European hedgehogs (Erinaceus europaeus) are urban dwellers and host both Ixodes ricinus and Ixodes hexagonus. These ticks transmit several zoonotic pathogens like Borrelia burgdorferi (sensu lato), Anaplasma phagocytophilum, Rickettsia helvetica, Borrelia miyamotoi and " Candidatus Neoehrlichia mikurensis". It is unclear to what extent hedgehogs in (sub) urban areas contribute to the presence of infected ticks in these areas, which subsequently pose a risk for acquiring a tick-borne disease. Therefore, it is important to investigate to what extent hedgehogs contribute to the enzootic cycle of these tick-borne pathogens, and to shed more light at the mechanisms of the transmission cycles involving hedgehogs and both ixodid tick species. Methods: Engorged ticks from hedgehogs were collected from (sub) urban areas via rehabilitating centres in Belgium. Ticks were screened individually for presence of Borrelia burgdorferi (sensu lato), Borrelia miyamotoi, Anaplasma phagocytophilum, Rickettsia helvetica and " Candidatus Neoehrlichia mikurensis" using PCR-based methods. Infection rates of the different pathogens in ticks were calculated and compared to infection rates in questing ticks. Results: Both Ixodes hexagonus (n = 1132) and Ixodes ricinus (n = 73) of all life stages were found on the 54 investigated hedgehogs. Only a few hedgehogs carried most of the ticks, with 6 of the 54 hedgehogs carrying more than half of all ticks (624/ 1205). Borrelia miyamotoi, A. phagocytophilum, R. helvetica and B. burgdorferi genospecies (Borrelia afzelii, Borrelia bavariensis and Borrelia spielmanii) were detected in both I. hexagonus and I. ricinus. Anaplasma phagocytophilum, R. helvetica, B. afzelii, B. bavariensis and B. spielmanii were found significantly more in engorged ticks in comparison to questing I. ricinus. Conclusions: European hedgehogs seem to contribute to the spread and transmission of tick-borne pathogens in urban areas. The relatively high prevalence of B. bavariensis, B. spielmanii, B. afzelii, A. phagocytophilum and R. helvetica in engorged ticks suggests that hedgehogs contribute to their enzootic cycles in (sub) urban areas. The extent to which hedgehogs can independently maintain these agents in natural cycles, and the role of other hosts (rodents and birds) remain to be investigated

    Eco-epidemiology of Borrelia miyamotoi and Lyme borreliosis spirochetes in a popular hunting and recreational forest area in Hungary

    Get PDF
    BACKGROUND: Borrelia miyamotoi, the newly discovered human pathogenic relapsing fever spirochete, and Borrelia burgdorferi sensu lato are maintained in natural rodent populations. The aim of this study was to investigate the natural cycle of B. miyamotoi and B. burgdorferi s.l. in a forest habitat with intensive hunting, forestry work and recreational activity in Southern Hungary. METHODS: We collected rodents with modified Sherman-traps during 2010–2013 and questing ticks with flagging in 2012. Small mammals were euthanized, tissue samples were collected and all ectoparasites were removed and stored. Samples were screened for pathogens with multiplex quantitative real-time polymerase chain reaction (qPCR) targeting a part of flagellin gene, then analysed with conventional PCRs and sequencing. RESULTS: 177 spleen and 348 skin samples of six rodent species were individually analysed. Prevalence in rodent tissue samples was 0.2 % (skin) and 0.5 % (spleen) for B. miyamotoi and 6.6 % (skin) and 2.2 % (spleen) for B. burgdorferi s.l. Relapsing fever spirochetes were detected in Apodemus flavicollis males, B. burgdorferi s.l. in Apodemus spp. and Myodes glareolus samples. Borrelia miyamotoi was detected in one questing Ixodes ricinus nymph and B. burgdorferi s.l in nymphs and adults. In the ticks removed from rodents DNA amplification of both pathogens was successful from I. ricinus larvae (B. miyamotoi 5.6 %, B. burgdorferi s.l. 11.1 %) and one out of five nymphs while from Ixodes acuminatus larvae, and nymph only B. burgdorferi s.l. DNA was amplified. Sequencing revealed B. lusitaniae in a questing I. ricinus nymph and altogether 17 B. afzelii were identified in other samples. Two Dermacentor marginatus engorged larva pools originating from uninfected hosts were also infected with B. afzelii. CONCLUSIONS: This is the first report of B. miyamotoi occurrence in a natural population of A. flavicollis as well as in Hungary. We provide new data about circulation of B. burgdorferi s.l. in rodent and tick communities including the role of I. acuminatus ticks in the endophilic pathogen cycle. Our results highlight the possible risk of infection with relapsing fever and Lyme borreliosis spirochetes in forest habitats especially in the high-risk groups of hunters, forestry workers and hikers

    Vertical transmission of Bartonella schoenbuchensis in Lipoptena cervi.

    Get PDF
    BACKGROUND Lipoptena cervi (Diptera: Hippoboscidae) is a hematophagous ectoparasite of cervids, which is considered to transmit pathogens between animals and occasionally to humans. The principal life stage that is able to parasitize new hosts is a winged ked that just emerged from a pupa. To facilitate efficient transmission of pathogens between hosts, vertical transmission from female deer keds to their offspring is necessary. We investigated vertical transmission of several vector-borne pathogens associated with cervids. METHODS Deer keds from several locations in Hungary were collected between 2009 and 2012. All life stages were represented: winged free-ranging adults, wingless adults collected from Capreolus capreolus and Cervus elaphus, developing larvae dissected from gravid females, and fully developed pupae. The presence of zoonotic pathogens was determined using qPCR or conventional PCR assays performed on DNA lysates. From the PCR-positive lysates, a gene fragment was amplified and sequenced for confirmation of pathogen presence, and/or pathogen species identification. RESULTS DNA of Bartonella schoenbuchensis was found in wingless males (2%) and females (2%) obtained from Cervus elaphus, dissected developing larvae (71%), and free-ranging winged males (2%) and females (11%). DNA of Anaplasma phagocytophilum and Rickettsia species was present in L. cervi adults, but not in immature stages. DNA of Candidatus Neoehrlichia mikurensis was absent in any of the life stages of L. cervi. CONCLUSIONS B. schoenbuchensis is transmitted from wingless adult females to developing larvae, making it very likely that L. cervi is a vector for B. schoenbuchensis. Lipoptena cervi is probably not a vector for A. phagocytophilum, Rickettsia species, and Candidatus N. mikurensis

    Circulation of four Anaplasma phagocytophilum ecotypes in Europe.

    Get PDF
    BACKGROUND Anaplasma phagocytophilum is the etiological agent of granulocytic anaplasmosis in humans and animals. Wild animals and ticks play key roles in the enzootic cycles of the pathogen. Potential ecotypes of A. phagocytophilum have been characterized genetically, but their host range, zoonotic potential and transmission dynamics has only incompletely been resolved. METHODS The presence of A. phagocytophilum DNA was determined in more than 6000 ixodid ticks collected from the vegetation and wildlife, in 289 tissue samples from wild and domestic animals, and 69 keds collected from deer, originating from various geographic locations in The Netherlands and Belgium. From the qPCR-positive lysates, a fragment of the groEL-gene was amplified and sequenced. Additional groEL sequences from ticks and animals from Europe were obtained from GenBank, and sequences from human cases were obtained through literature searches. Statistical analyses were performed to identify A. phagocytophilum ecotypes, to assess their host range and their zoonotic potential. The population dynamics of A. phagocytophilum ecotypes was investigated using population genetic analyses. RESULTS DNA of A. phagocytophilum was present in all stages of questing and feeding Ixodes ricinus, feeding I. hexagonus, I. frontalis, I. trianguliceps, and deer keds, but was absent in questing I. arboricola and Dermacentor reticulatus. DNA of A. phagocytophilum was present in feeding ticks and tissues from many vertebrates, including roe deer, mouflon, red foxes, wild boar, sheep and hedgehogs but was rarely found in rodents and birds and was absent in badgers and lizards. Four geographically dispersed A. phagocytophilum ecotypes were identified, that had significantly different host ranges. All sequences from human cases belonged to only one of these ecotypes. Based on population genetic parameters, the potentially zoonotic ecotype showed significant expansion. CONCLUSION Four ecotypes of A. phagocytophilum with differential enzootic cycles were identified. So far, all human cases clustered in only one of these ecotypes. The zoonotic ecotype has the broadest range of wildlife hosts. The expansion of the zoonotic A. phagocytophilum ecotype indicates a recent increase of the acarological risk of exposure of humans and animals

    Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in natural rodent and tick communities in Southern Hungary.

    No full text
    The aim of this study was to investigate the natural cycle of the new human pathogenic bacteria Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in Southern Hungary. We collected rodents with live-traps (2010-2013) and questing ticks with flagging in 2012. Small mammals were euthanized, tissue samples were collected and all the ectoparasites were removed and stored in 70% alcohol. We found relatively low overall prevalence of tick infestation (8%). Samples were analysed for A. phagocytophilum and Candidatus N. mikurensis with multiplex quantitative real-time PCR targeting a part of major surface protein 2 (msp2) and the heat shock protein groEL genes, respectively. The overall prevalence in tissue samples was 6.6% (skin) and 5.1% (spleen) for A. phagocytophilum and 1.7% (skin) and 3.4% (spleen) for Candidatus N. mikurensis. Candidatus N. mikurensis was only detected in Apodemus flavicollis and Apodemus agrarius, while A. phagocytophilum was found in A. flavicollis, A. agrarius, Myodes glareolus, Microtus arvalis and Mus musculus samples. Prevalence of A. phagocytophilum in skin samples of A. flavicollis was significantly higher than prevalence of N. mikurensis (p<0.05). Among questing Ixodes ricinus ticks we found three (8.8%) individuals (female, male, nymph) infected with Candidatus N. mikurensis. Five (3.1%) questing ticks had A. phagocytophilum infection (one I. ricinus male, two Dermacentor reticulatus females and two Haemaphysalis concinna females). We found one I. ricinus nymph removed from a male A. flavicollis with A. phagocytophilum infection. Our study provides new data on the occurrence of these pathogens in rodent tissue samples, questing ticks and engorged ticks in Southern Hungary
    corecore