12 research outputs found

    A cohort of 17 patients with kyphoscoliotic Ehlers-Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history.

    Get PDF
    PurposeIn 2012 we reported in six individuals a clinical condition almost indistinguishable from PLOD1-kyphoscoliotic Ehlers-Danlos syndrome (PLOD1-kEDS), caused by biallelic mutations in FKBP14, and characterized by progressive kyphoscoliosis, myopathy, and hearing loss in addition to connective tissue abnormalities such as joint hypermobility and hyperelastic skin. FKBP14 is an ER-resident protein belonging to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases); it catalyzes the folding of type III collagen and interacts with type III, type VI, and type X collagens. Only nine affected individuals have been reported to date.MethodsWe report on a cohort of 17 individuals with FKBP14-kEDS and the follow-up of three previously reported patients, and provide an extensive overview of the disorder and its natural history based on clinical, biochemical, and molecular genetics data.ResultsBased on the frequency of the clinical features of 23 patients from the present and previous cohorts, we define major and minor features of FKBP14-kEDS. We show that myopathy is confirmed by histology and muscle imaging only in some patients, and that hearing impairment is predominantly sensorineural and may not be present in all individuals.ConclusionOur data further support the extensive clinical overlap with PLOD1-kEDS and show that vascular complications are rare manifestations of FKBP14-kEDS

    P4HA1 mutations cause a unique congenital disorder of connective tissue involving tendon, bone, muscle and the eye

    No full text
    Collagen prolyl 4-hydroxylases (C-P4Hs) play a central role in the formation and stabilization of the triple helical domain of collagens. P4HA1 encodes the catalytic a(I) subunit of the main C-P4H isoenzyme (C-P4H-I). We now report human bi-allelic P4HA1 mutations in a family with a congenital-onset disorder of connective tissue, manifesting as early-onset joint hypermobility, joint contractures, muscle weakness and bone dysplasia as well as high myopia, with evidence of clinical improvement of motor function over time in the surviving patient. Similar to P4ha1 null mice, which die prenatally, the muscle tissue from P1 and P2 was found to have reduced collagen IV immunoreactivity at the muscle basement membrane. Patients were compound heterozygous for frameshift and splice site mutations leading to reduced, but not absent, P4HA1 protein level and C-P4H activity in dermal fibroblasts compared to age-matched control samples. Differential scanning calorimetry revealed reduced thermal stability of collagen in patient-derived dermal fibroblasts versus age-matched control samples. Mutations affecting the family of C-P4Hs, and in particular C-P4H-I, should be considered in patients presenting with congenital connective tissue/myopathy overlap disorders with joint hypermobility, contractures, mild skeletal dysplasia and high myopia

    Association of a Novel ACTA1 Mutation With a Dominant Progressive Scapuloperoneal Myopathy in an Extended Family

    No full text
    New genomic strategies can now be applied to identify a diagnosis in patients and families with previously undiagnosed rare genetic conditions. The large family evaluated in the present study was described in 1966 and now expands the phenotype of a known neuromuscular gene

    Novel Mutations Widen the Phenotypic Spectrum of Slow Skeletal/ÎČ-Cardiac Myosin (MYH7) Distal Myopathy

    No full text
    Laing early onset distal myopathy and myosin storage myopathy are caused by mutations of slow skeletal/ÎČ-cardiac myosin heavy chain encoded by the gene MYH7, as is a common form of familial hypertrophic/dilated cardiomyopathy. The mechanisms by which different phenotypes are produced by mutations in MYH7, even in the same region of the gene, are not known. To explore the clinical spectrum and pathobiology, we screened the MYH7 gene in 88 patients from 21 previously unpublished families presenting with distal or generalized skeletal muscle weakness, with or without cardiac involvement. Twelve novel mutations have been identified in thirteen families. In one of these families, the father of the proband was found to be a mosaic for the MYH7 mutation. In eight cases, de novo mutation appeared to have occurred, which was proven in four. The presenting complaint was footdrop, sometimes leading to delayed walking or tripping, in members of 17 families (81%), with other presentations including cardiomyopathy in infancy, generalized floppiness, and scoliosis. Cardiac involvement as well as skeletal muscle weakness was identified in nine of 21 families. Spinal involvement such as scoliosis or rigidity was identified in 12 (57%). This report widens the clinical and pathological phenotypes, and the genetics of MYH7 mutations leading to skeletal muscle diseases

    GGPS1 Mutations Cause Muscular Dystrophy/Hearing Loss/Ovarian Insufficiency Syndrome

    Get PDF
    Objective: A hitherto undescribed phenotype of early onset muscular dystrophy associated with sensorineural hearing loss and primary ovarian insufficiency was initially identified in 2 siblings and in subsequent patients with a similar constellation of findings. The goal of this study was to understand the genetic and molecular etiology of this condition.Methods: We applied whole exome sequencing (WES) superimposed on shared haplotype regions to identify the initial biallelic variants in GGPS1 followed by GGPS1 Sanger sequencing or WES in 5 additional families with the same phenotype. Molecular modeling, biochemical analysis, laser membrane injury assay, and the generation of a Y259C knock-in mouse were done.Results: A total of 11 patients in 6 families carrying 5 different biallelic pathogenic variants in specific domains of GGPS1 were identified. GGPS1 encodes geranylgeranyl diphosphate synthase in the mevalonate/isoprenoid pathway, which catalyzes the synthesis of geranylgeranyl pyrophosphate, the lipid precursor of geranylgeranylated proteins including small guanosine triphosphatases. In addition to proximal weakness, all but one patient presented with congenital sensorineural hearing loss, and all postpubertal females had primary ovarian insufficiency. Muscle histology was dystrophic, with ultrastructural evidence of autophagic material and large mitochondria in the most severe cases. There was delayed membrane healing after laser injury in patient-derived myogenic cells, and a knock-in mouse of one of the mutations (Y259C) resulted in prenatal lethality.Interpretation: The identification of specific GGPS1 mutations defines the cause of a unique form of muscular dystrophy with hearing loss and ovarian insufficiency and points to a novel pathway for this clinical constellation. ANN NEUROL 2020;88:332–347

    MRI in sarcoglycanopathies: a large international cohort study

    Get PDF
    OBJECTIVES: To characterise the pattern and spectrum of involvement on muscle MRI in a large cohort of patients with sarcoglycanopathies, which are limb-girdle muscular dystrophies (LGMD2C-2F) caused by mutations in one of the four genes coding for muscle sarcoglycans. METHODS: Lower limb MRI scans of patients with LGMD2C-2F, ranging from severe childhood variants to milder adult-onset forms, were collected in 17 neuromuscular referral centres in Europe and USA. Muscle involvement was evaluated semiquantitatively on T1-weighted images according to a visual score, and the global pattern was assessed as well. RESULTS: Scans from 69 patients were examined (38 LGMD2D, 18 LGMD2C, 12 LGMD2E and 1 LGMD2F). A common pattern of involvement was found in all the analysed scans irrespective of the mutated gene. The most and earliest affected muscles were the thigh adductors, glutei and posterior thigh groups, while lower leg muscles were relatively spared even in advanced disease. A proximodistal gradient of involvement of vasti muscles was a consistent finding in these patients, including the most severe ones. CONCLUSIONS: Muscle involvement on MRI is consistent in patients with LGMD2C-F and can be helpful in distinguishing sarcoglycanopathies from other LGMDs or dystrophinopathies, which represent the most common differential diagnoses. Our data provide evidence about selective susceptibility or resistance to degeneration of specific muscles when one of the sarcoglycans is deficient, as well as preliminary information about progressive involvement of the different muscles over time
    corecore