266 research outputs found

    Grounding Design to Prevent Electrostatic Accumulation in Foldable Displays

    Get PDF
    In traditional polymer organic light emitting diode (P-OLED) displays, electrostatic charge buildup can occur near the edge of the display, leading to abnormalities such as green flashes, vertical crosstalk, or a greenish display. To mitigate this problem, a discharge path is established to release electrostatic charges by using silver dotting on the edge of the display that connects to a conductive black matrix and provides a grounding path. However, for foldable displays, the silver dotting can crack due to the movement and sliding of different layers as the device is folded and unfolded, causing disconnection from ground. This disclosure describes a foldable display that implements an electrostatic discharge path as a grounding mechanism to avoid electrostatic charge accumulation at the edge of the display. The grounding design includes silver printing on the trim area of the device that is linked to a conductive pressure sensitive adhesive (PSA) to release the electrostatic charge via the device enclosure

    Infinitely many 4d N=1 SCFTs with a=c

    Full text link
    We study a rich set of four-dimensional N=1\mathcal{N}=1 superconformal field theories (SCFTs) with both central charges identical: a=ca = c. We construct them via the diagonal N=1\mathcal{N}=1 gauging of the flavor symmetry GG of a collection of N=2\mathcal{N}=2 Argyres--Douglas theories of type Dp(G)\mathcal{D}_p(G), with or without additional adjoint chiral multiplets. In this way, we construct infinitely-many theories that flow to interacting SCFTs with a=ca = c in the infrared. Finally, we briefly highlight the features of the SCFTs without a=ca = c that arise from generalizing this construction.Comment: 43 pages+references, 11 figures, 5 table

    5GHz Wideband Channel Model in Apartment Building

    Get PDF
    This paper reports the empirical 5GHz wideband channel model in apartment building. The channel measurement system is based on the pseudo-noise (PN) correlation method. In measurements, transmitter is fixed at two different positions in a house while receiver moves from the rooms of the house to those of nearby houses in each transmitter position. From measurement results, propagation loss and wideband channel characteristics are analyzed. As a result, we found that the signal reflected to neighboring buildings proffered other clusters. Especially, in cases of the receiver positions where with a big window and large away from the transmitter, this phenomenon is emphasized. And transmitter located at the biased position, could cause the imbalance of received signal level in a single house and the interference to neighboring houses

    Calsyntenins Function as Synaptogenic Adhesion Molecules in Concert with Neurexins

    Get PDF
    SummaryMultiple synaptic adhesion molecules govern synapse formation. Here, we propose calsyntenin-3/alcadein-β as a synapse organizer that specifically induces presynaptic differentiation in heterologous synapse-formation assays. Calsyntenin-3 (CST-3) is highly expressed during various postnatal periods of mouse brain development. The simultaneous knockdown of all three CSTs, but not CST-3 alone, decreases inhibitory, but not excitatory, synapse densities in cultured hippocampal neurons. Moreover, the knockdown of CSTs specifically reduces inhibitory synaptic transmission in vitro and in vivo. Remarkably, the loss of CSTs induces a concomitant decrease in neuron soma size in a non-cell-autonomous manner. Furthermore, α-neurexins (α-Nrxs) are components of a CST-3 complex involved in CST-3-mediated presynaptic differentiation. However, CST-3 does not directly bind to Nrxs. Viewed together, these data suggest that the three CSTs redundantly regulate inhibitory synapse formation, inhibitory synapse function, and neuron development in concert with Nrxs

    Sol-gel Processed Yttrium-doped SnO2 Thin Film Transistors

    Get PDF
    Y-doped SnO2 thin film transistors were successfully fabricated by means of sol-gel process. The effect of Y concentration on the structural, chemical, and electrical properties of sol-gel-processed SnO2 films was investigated via GIXRD, SPM, and XPS; the corresponding electrical transport properties of the film were also evaluated. The dopant, Y, can successfully control the free carrier concentration by suppressing the formation of oxygen vacancy inside SnO2 semiconductors due to its lower electronegativity and SEP. With an increase of Ywt%, it was observed that the crystallinity and oxygen vacancy concentration decreased, and the operation mode of SnO2 thin film transistor changed from accumulation (normally on) to enhancement mode (normally off) with a positive Vth shift. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.1

    Impaired formation of high-order gephyrin oligomers underlies gephyrin dysfunction-associated pathologies

    Get PDF
    Gephyrin is critical for the structure, function, and plasticity of inhibitory synapses. Gephyrin mutations have been linked to various neurological disorders; however, systematic analyses of the functional consequences of these mutations are lacking. Here, we performed molecular dynamics simulations of gephyrin to predict how six reported point mutations might change the structural stability and/or function of gephyrin. Additional in silico analyses revealed that the A91T and G375D mutations reduce the binding free energy of gephyrin oligomer formation. Gephyrin A91T and G375D displayed altered clustering patterns in COS-7 cells and nullified the inhibitory synapse-promoting effect of gephyrin in cultured neurons. However, only the G375D mutation reduced gephyrin interaction with GABAA receptors and neuroligin-2 in mouse brain; it also failed to normalize deficits in GABAergic synapse maintenance and neuronal hyperactivity observed in hippocampal dentate gyrus-specific gephyrin-deficient mice. Our results provide insights into biochemical, cell-biological, and network-activity effects of the pathogenic G375D mutation. © 2021 The Author(s)1

    Conformal and Ultra Shallow Junction Formation Achieved Using a Pulsed-Laser Annealing Process Integrated With a Modified Plasma Assisted Doping Method

    Get PDF
    Recently, a shallow and conformal doping profile is required for promising 3D structured devices. In this study, we deposited the dopant phosphorus (P) using modified plasma assisted doping (PaD) followed by an annealing process to electrically activate the dopants. A rapid thermal annealing process (RTP) was the first approach tested for activation but it resulted in a deep junction ( > 35 nm). To reduce the junction depth, we tried the fiash lamp annealing process (FLP) to shorten the annealing time. We also predicted the annealing temperature by numerical thermal analysis, which reached 1,020 degrees C. However, the FLP resulted in a deep junction (similar to 30 nm), which was not shallow enough to suppress short channel effects. Since an even shorter annealing process was required to form a ultra-shallow junction, we tried the laser annealing process (LAP) as a promising alternative. The LAP, which had a power density of 0.3 J/cm(2), increased the surface temperature up to 1,100 degrees C with a shallow isothermal layer. Using the LAP, we achieved a USJ with an activated surface dopant concentration of 3.86 x 10(19) cm(-3) and a junction depth of 10 nm, which will allow further scaling-down of devices.1

    Clinical and Echocardiographic Findings of Newly Diagnosed Acute Decompensated Heart Failure in Elderly Patients

    Get PDF
    PURPOSE: Elderly patients (pts) (EPs; ≥ 65 years old) with newly diagnosed-acute decompensated heart failure (ND-ADHF) have not yet been studied. The aim of the present study was to investigate clinical characteristics, including echocardiographic findings and prognosis, for EPs with ND-ADHF and to compare those with non-elderly pts (NEPs). MATERIALS AND METHODS: We retrospectively investigated 256 pts (144 males, 63.0 ± 14.8 years old) who were admitted to our hospital between January 2005 and March 2009 with ND-ADHF. Clinical characteristics and echocardiographic parameters were analyzed in EPs (n = 135, 58 males) and NEPs (n = 121, 86 males). RESULTS: In intergroup comparison, female gender, diabetes mellitus, previous stroke and hypertension were more common in EPs. Body mass index (22.3 ± 4.5 vs. 24.0 ± 4.4 kg/m(2)), estimated glomerular filtration rate (54.8 ± 24.3 vs. 69.2 ± 30.7 mL/min/m(2)), C-reactive protein (28.5 ± 46.9 vs. 7.6 ± 11.6 mg/dL), hemoglobin (12.3 ± 2.1 vs. 13.6 ± 2.3 g/dL) and N-terminal pro-brain natriuretic peptide level (10,538.2 ± 10,942.3 vs. 6,771.0 ± 8,964.7 pg/mL) were significantly different (p < 0.05 for all). Early mitral inflow velocity to early diastolic mitral annular velocity (E/E') was significantly higher in EPs than in NEPs (21.2 ± 9.4 vs. 18.0 ± 8.9, p < 0.05). During follow-up (44.7 ± 14.5 months), there were no significant differences in in-hospital mortality, re-hospitalization and cardiovascular mortality between EPs and NEPs (p = NS for all). CONCLUSION: EPs with ND-ADHF have different clinical characteristics and higher LV filling pressure when compared with NEPs. However, the clinical outcomes for NEPs with ND-ADHF are not necessarily more favorable than those for EPs.ope

    SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion

    Get PDF
    Synaptic adhesion molecules regulate various aspects of synapse development, function and plasticity. These functions mainly involve trans-synaptic interactions and positive regulations, whereas cis-interactions and negative regulation are less understood. Here we report that SALM4, a member of the SALM/Lrfn family of synaptic adhesion molecules, suppresses excitatory synapse development through cis inhibition of SALM3, another SALM family protein with synaptogenic activity. Salm4-mutant (Salm4) mice show increased excitatory synapse numbers in the hippocampus. SALM4 cis-interacts with SALM3, inhibits trans-synaptic SALM3 interaction with presynaptic LAR family receptor tyrosine phosphatases and suppresses SALM3-dependent presynaptic differentiation. Importantly, deletion of Salm3 in Salm4 mice (Salm3, Salm4) normalizes the increased excitatory synapse number. These results suggest that SALM4 negatively regulates excitatory synapses via cis inhibition of the trans-synaptic SALM3-LAR adhesion. © The Author(s) 2016110101sciescopu
    corecore