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Abstract: Y-doped SnO2 thin film transistors were successfully fabricated by means of sol-gel process.
The effect of Y concentration on the structural, chemical, and electrical properties of sol-gel-processed
SnO2 films was investigated via GIXRD, SPM, and XPS; the corresponding electrical transport
properties of the film were also evaluated. The dopant, Y, can successfully control the free carrier
concentration by suppressing the formation of oxygen vacancy inside SnO2 semiconductors due to
its lower electronegativity and SEP. With an increase of Ywt%, it was observed that the crystallinity
and oxygen vacancy concentration decreased, and the operation mode of SnO2 thin film transistor
changed from accumulation (normally on) to enhancement mode (normally off) with a positive
Vth shift.
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1. Introduction

Metal-oxide semiconductors have received considerable attention as promising active channel
materials for transistors for transparent displays and flexible and wearable optical and electronic
devices due to their high mobility, high transparency, low cost, robust, CMOS process compatible
stability, and good uniformity. Generally, n-type metal-oxide semiconductors, showing high mobility,
have been used in these applications [1–4] (i.e., ZnO, In2O3, and SnO2). Among these, SnO2 has
the highest mobility and the transparency due to its high intrinsic mobility and large bandgap [5].
In addition, SnO2 is inexpensive and shows good chemical and thermal stability at high temperatures [6].
It have been shown to be a candidate for application in gas sensors due to its high surface to volume
ratio [7]. The melting point of this material makes crystallization easier than with other semiconductors.
This relatively easy crystallization results in improved conductivity and mobility by suppressing grain
boundary scattering [8]. In addition, SnO2 is a paradigmatic indium-free semiconductor. Indium,
a costly, rare metal, is found in only a few mining sites worldwide [9]. However, the electronic
configuration of Sn (1s22s2p63s2p6d105s2p2) is similar to that of In (1s22s2p63s2p6d104s2p6d105s2p1),
and SnO2 semiconductor films are characterized by promising electrical properties [10–14]. Sol-gel
processing represents a promising low cost fabrication method by which to obtain high-quality SnO2

films without using a conventional vacuum-based deposition process, requiring a complex and high
cost vacuum system [15–20]. Unfortunately, oxygen vacancy inside metal oxide semiconductor leads
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to problems of stability and of the controllability of Vth. Therefore, controlling oxygen vacancy is
critical to control the device performance. It is well known that the electronegativity and standard
electrode potential (SEP) of the dopant can influence its carrier suppressed ability [21,22]. In this work,
we choose yttrium as a dopant to suppress the carriers in the SnO2 semiconductor system, due to
its lower electronegativity, SEP, and price. Y-doped SnO2 thin film transistors (TFTs) are therefore
fabricated for the first-time. We use grazing incidence X-ray diffraction (GIXRD), scanning probe
microscopy (SPM), and X-ray photoelectron spectroscopy (XPS) to investigate sol-gel-processed SnO2

films obtained with different Ywt%. To understand the effect of Ywt% on the electrical properties of the
SnO2 films, we fabricate bottom gate TFTs on SiO2/Si substrates and evaluate the electrical properties
at different Ywt% concentrations.

2. Materials and Methods

A simple inverted coplanar structure was adopted for SnO2 TFT fabrication. Heavily doped
p-type Si and dry oxygen, thermally-grown, 100-nm-thick SiO2 layers were used as the bottom gate
and insulator. The Au source/drain electrodes were formed by means of an e-beam evaporation and
lift-off process. The designed channel width and length were 1000 µm and 100 µm, respectively.
A SnCl2 sol-gel precursor (Sigma Aldrich, St. Louis, MO, USA) was prepared for the SnO2 films.
A SnCl2 solution (concentration: 0.025 M) was prepared by dissolving tin (II) chloride dehydrate
(SnCl2·2H2O, 0.25 mmol) in ethanol (10 mL). Then, 0.2, 0.5, and 1.0 wt% Y(NO3)2·4H2O was dissolved
in the prepared SnCl2 solution. An UV/ozone process was conducted for 60 min to remove organic dust
on the substrates. The prepared precursor solution was spin-coated at 3000 rpm for 50 s. After coating,
the films were pre-annealed in air at 150 ◦C for 10 min to evaporate the solvent. To convert into SnO2,
the films were annealed in a tube furnace at 500 ◦C for 2 h in air. The structural characteristics of films
were investigated by a grazing incidence X-ray diffraction (GIXRD) (Philips X’pert Pro) with Cu Kα
radiation (λ = 1.54 Å), where samples were irradiated at an angle of 0.3◦. The surface morphology
was examined using a scanning probe microscope (SPM: Park NX20, tapping mode). The chemical
compositions of the films were investigated by X-ray photoelectron spectroscopy (XPS) (Quantera
SXM), with a monochromatic Al Kα (1488 eV) source and a pass energy of 40 eV. The electrical
properties of the TFTs were examined using a Keithley 2636B semiconductor parameter analyzer and a
probe station in air.

3. Results and Discussion

Figure 1 shows the effect of Y3+ concentrations on the phase evolution of Y-doped SnO2 films
annealed at 500 ◦C for 2 h. All the annealed Y-doped SnO2 films are poly-crystalline in nature.
The GIXRD patterns revealed that all peaks were well matched with the standard tetragonal SnO2

pattern (JCPDS: 41-1445). The broaden diffraction peaks meant that the formed films were in the
nanostructured phase. Diffraction peaks at 26.6◦, 33.8◦, 37.9◦, and 51.7◦ corresponded to the (110),
(101), (200), and (211) crystal planes of tetragonal SnO2, respectively. The full width at half-maximum
(FWHM) of the obtained GIXRD peak was strongly correlated with the crystallite size of a particular
crystal orientation. The FWHM of the SnO2 (110) peak was smaller than those of the other peaks,
indicating that SnO2 crystallites grew initially in the (110) plane.

The average crystalline size of the annealed films was obtained using Scherrer’s formula
(Equation (1)),

D =
0.9λ
βcosθ

(1)

where D, λ, β, and θ denote the crystalline size, Cu Kαwavelength (1.54 Å), full width at half-maximum
of the peak, and position of the peak, respectively. The obtained β values were 1.33, 1.26, 1.28,
and 1.3, yielding D values of 6.13, 6.47, 6.37, and 6.27 nm for the (110) phase of formed pure SnO2 and
Y-doped SnO2 semiconductor films. The microstrain and dislocation density were calculated using the
relationship ε = βcosθ, and δ = 1/D2, respectively. The calculated values are listed in Table 1. Compared
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to pure SnO2 semiconductor films, there was a relative Bragg peak shift towards a smaller angle for
Y-doped SnO2 semiconductor films. This Bragg peak position shift towards lower values in the of
Y-doped SnO2 semiconductor films resulted from an increase in lattice parameter values, originating
from the internal stress generated by the substitution of host Sn4+ (0.74 Å) ions by dopant Y3+ (1.04 Å)
ions. In Y-doped SnO2 films, the peaks, corresponding to Y2O3, could not obtained. Y3+ ions cannot be
segregated to form Y2O3, or the amount is too little to be detected (i.e., <1 wt%).Electronics 2020, 9, 254 3 of 8 
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Figure 1. (a) GIXRD patterns and (b) the GIXRD patterns near the (110) lattice plane with different
Ywt%.

Table 1. Crystalline size, microstain, and dislocation density of Y-doped SnO2 semiconductor films
with different Ywt%.

wt% of Yttrium Crystalline Size (nm) Microstrain Dislocation Density(10−2 nm−2)

0.0 6.13 0.0225 2.24
0.2 6.47 0.0185 2.01
0.5 6.37 0.0174 2.08
1.0 6.27 0.0171 2.14

The SPM images of the SnO2 semiconductor films with 0, 0.2, 0.5, and 1.0 wt% Y on SiO2/Si wafer
annealed at 500 ◦C for 2 h are shown in Figure 2. The root mean square (RMS) values of the films
obtained from SPM images are 0.97, 1.40, 2.45, and 2.74 nm for SnO2 semiconductor films with 0, 0.2,
0.5, and 1.0 wt% Y, respectively. The RMS values are increased with increased Ywt%. The surface
roughness plays a critical factor to effect on device performance and the active channel layer with
minimal surface roughness results in the better thin film transistor performance.

The chemical composition of pure SnO2 and Y-doped SnO2 semiconductor films was investigated
using XPS analysis. The Y-doped films showed XPS spectra, corresponding to Y located at 157.64 and
159.56 eV, and the spectra could be distinguished with two Gaussian Peaks of Y 3d5/2 and Y 3d3/2,
indicating the formation of Y-O bonding in Figure 3a. The intensity of these spectra increased with
increasing Ywt%. Figure 3b shows the XPS spectra of Sn 3d5/2 and Sn 3d3/2. Comparing to the binding
energy of pure SnO2 films, the binding energy of the 0.5 wt% and 1.0 wt% Y-doped SnO2 films were
shifted toward higher binding energy values. The binding energy shift towards high values could be
associated with a phase transformation from SnO to SnO2 [23].
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Figure 4 shows the O 1s XPS spectra of Y-doped SnO2 films as a function of Ywt%. The O 1s
peak convoluted into two different Gaussian subpeaks, occurring at 529.9 and 531.8 eV. The dominant
peak located at 529.9 eV was related to O2− ions binding with neighbor metal ions in the lattice (OL),
and the peak located at 531.8 eV was related to O2− ions in oxygen vacancy regions (OV). The relative
oxygen vacancy quantity was estimated with the area ratio of the convoluted subpeaks. With an
increase in the wt% of Y, lower oxygen vacancy density was obtained. The OV/(OL+OV) ratios were
0.46 for pure SnO2, 0.45 for 0.2wt% Y-doped SnO2, 0.40 for 0.5wt% Y-doped SnO2, and 0.3 for 1.0wt%
Y-doped SnO2, respectively. Obviously, the OV/(OL+OV) area ratio gradually decreased with the
increase of Ywt%, indicating that the OV concentration was decreased by Y doping. Y3+ ions can act as
carrier suppressors in SnO2 thin film systems, due to their lower electronegativity (1.22) and lower
standard electrode potential (SEP) (−2.38 V). The increased bond strength of dopant-oxygen bond lead
to decrease the oxygen vacancy, related to the carrier concentration in the metal oxide semiconductor
system. For these reasons, Y is a stronger oxidizer than Sn. During the film formation step, fewer
oxygen vacancies were formed in Y-doped SnO2 films compared to pure SnO2 films. Huh et al. found
that Sn2+ binding in SnO2 leads to the formation of oxygen vacancy defects. Therefore, the reduction
in the proportions of the SnO and OV peaks with Y content indicated a decrease in electron free carrier
density and oxygen vacancy.
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Figure 5 shows the variation of the electrical properties of the fabricated Y-doped SnO2 thin film
transistors using different Ywt% at gate voltages of −30 V to 30 V. Figure 5e shows the representative
transfer curves (ID-VG) of SnO2 thin film transistors with different Ywt%. All the fabricated Y-doped
SnO2 thin film transistors showed conventional n-type semiconductor characteristics. The field effect
mobility in the saturation regime was calculated from the drain current equation, which is given as
follows:

ID = µCi
W
2L

(VG −Vth)
2 (2)

where Ci is the capacitance of gate insulator, W is the channel width, L is the channel length,
and Vth is the threshold voltage. The extracted field effect mobilities in the saturation regime of the
pristine, 0.2, 0.5, and 1.0 wt% Y-doped SnO2 thin film transistors were 12, 7.4, 1, and 0.7 cm2/Vs,
respectively. When Ywt% increased, the on current and field effect mobility in the saturation regimes
were decreased. The crystalline size of the semiconductor active channel layer strongly affects the
on-current and field-effect mobility of thin film transistors. Larger crystalline size is helpful to improve
device performance via the suppression of boundary scattering. However, based on GIXRD data,
with increased Ywt%, the crystalline size of SnO2 semiconductor films was deceased. Decreased
crystalline and strong grain boundary scattering also leads to degraded device performances [24]. It is
well known that the main transport mechanism of metal oxide semiconductor systems is percolation
conduction mechanism, which is improved by filling the trap state at high carrier concentrations [25].
The degraded field-effect mobility and on-current originated from a significant decrease in the free
carrier concentration, originating from the oxygen vacancy in metal oxide semiconductors. In addition,
the Y3+-Sn4+ substitution reaction might generate an extra hole carrier, leading to a decrease in free
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carrier concentration by compensating for electron carrier concentration [26]. In addition, the threshold
voltage exhibited a positive shift, in particular, from 0.5 wt% Y. The fabricated devices showed
enhancement mode operation. The reduced carrier concentration in the n-type semiconductor based
thin film transistors induced higher Vth. The channel with a lower carrier concentration could be
depleted easily and required more gate bias to turn on devices. In this study, these positive shifts
in Vth originated from the reduced electron density in the SnO2 semiconductor active layer with an
Ywt% increase.

Electronics 2020, 9, 254 6 of 8 

 

crystalline and strong grain boundary scattering also leads to degraded device performances [24]. It 
is well known that the main transport mechanism of metal oxide semiconductor systems is 
percolation conduction mechanism, which is improved by filling the trap state at high carrier 
concentrations [25]. The degraded field-effect mobility and on-current originated from a significant 
decrease in the free carrier concentration, originating from the oxygen vacancy in metal oxide 
semiconductors. In addition, the Y3+-Sn4+ substitution reaction might generate an extra hole carrier, 
leading to a decrease in free carrier concentration by compensating for electron carrier concentration 
[26]. In addition, the threshold voltage exhibited a positive shift, in particular, from 0.5 wt% Y. The 
fabricated devices showed enhancement mode operation. The reduced carrier concentration in the n-
type semiconductor based thin film transistors induced higher Vth. The channel with a lower carrier 
concentration could be depleted easily and required more gate bias to turn on devices. In this study, 
these positive shifts in Vth originated from the reduced electron density in the SnO2 semiconductor 
active layer with an Ywt% increase. 

 

 

 

Figure 5. Representative electrical characteristics of the fabricated Y-doped SnO2 thin film transistors:
(a–d) ID-VD curves with 0.0, 0.2, 0.5, 1.0 wt% Y, respectively. (e) ID-VG curves at high VD (+30.0 V).
(f) Y concentration dependence on the field effect mobility in saturation regime and Vth.



Electronics 2020, 9, 254 7 of 8

4. Conclusions

In this study, Y-doped SnO2 thin film transistors were successfully fabricated by means of sol-gel
process. The effect of Y concentration on the structural, chemical, and electrical properties of sol-gel
processed SnO2 films was investigated using GIXRD, SPM, and XPS. The corresponding electrical
transport properties of the film were also evaluated. The dopant, Y, can successfully control the free
carrier concentration by suppressing the formation of oxygen vacancy inside SnO2 semiconductors due
to its lower electronegativity and SEP. With an increase of Ywt%, it was observed that the crystallinity
and oxygen vacancy concentration decreased, and the operation mode of the SnO2 thin film transistor
occurred from accumulation (normally on) to enhancement mode (normally off) with a positive
Vth shift.
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