22 research outputs found

    Fungal cytochrome P450 database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytochrome P450 enzymes play critical roles in fungal biology and ecology. To support studies on the roles and evolution of cytochrome P450 enzymes in fungi based on rapidly accumulating genome sequences from diverse fungal species, an efficient bioinformatics platform specialized for this super family of proteins is highly desirable.</p> <p>Results</p> <p>The Fungal Cytochrome P450 Database (FCPD) archives genes encoding P450s in the genomes of 66 fungal and 4 oomycete species (4,538 in total) and supports analyses of their sequences, chromosomal distribution pattern, and evolutionary histories and relationships. The archived P450s were classified into 16 classes based on InterPro terms and clustered into 141 groups using tribe-MCL. The proportion of P450s in the total proteome and class distribution in individual species exhibited certain taxon-specific characteristics.</p> <p>Conclusion</p> <p>The FCPD will facilitate systematic identification and multifaceted analyses of P450s at multiple taxon levels via the web. All data and functions are available at the web site <url>http://p450.riceblast.snu.ac.kr/</url>.</p

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    A multifunctional SnO2-nanowires/carbon composite interlayer for high- performance lithium-sulfur batteries

    No full text
    Recently, lithium-sulfur (Li-S) batteries have been demonstrated as promising next-generation energy-storage devices. However, their practical application is hindered by poor cycling performance and rate capability. In this study, we prepared a multifunctional interlayer composed of SnO2 nanowires (NWs) and conductive carbon paper (CP) to enhance the electrochemical performance of Li-S batteries. This SnO2 NWs@CP interlayer could efficiently adsorb lithium polysulfides and provide electron-conductive pathways to the sulfur electrode, leading to suppression of the polysulfide shuttle effect and enhancement of the electrochemical reaction kinetics for cycling performance and rate capability. A lithium-sulfur cell fabricated with SnO2 NWs@CP interlayer at a high sulfur loading amount (ca. 4.0 mg cm(-2)) could deliver a high specific capacity of 815 mAh g(-1) (based on sulfur) even after 100 cycles at 0.2 degrees C with a high coulombic efficiency of 98.2%. These results demonstrate that the introduction of multifunctional SnO2 NWs@CP interlayers should be a promising new strategy for the development of high-energy-density Li-S batteries.11Nsciescopu
    corecore