23 research outputs found

    Molecular absorption in transition region spectral lines

    Full text link
    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary . The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales and introduces a new complexity into our understanding of solar thermal structure. It lends credence to previous numerical studies that found evidence for elevated pockets of cool gas in the chromosphere.Comment: accepted by A&A Letter

    Thomson scattering above solar active regions and an ad-hoc polarization correction method for the emissive corona

    Get PDF
    Thomson scattered photospheric light is the dominant constituent of the lower solar corona's spectral continuum viewed off-limb at optical wavelengths. Known as the K-corona, it is also linearly polarized. We investigate the possibility of using the a priori polarized characteristics of the K-corona, together with polarized emission lines, to measure and correct instrument-induced polarized crosstalk. First, we derive the Stokes parameters of Thomson scattering of unpolarized light in an irreducible spherical tensor formalism. This allows forward synthesis of the Thomson scattered signal for the more complex scenario of symmetry-breaking features in the incident radiation field, which could limit the accuracy of our proposed technique. For this, we make use of an advanced 3D radiative magnetohydrodynamic coronal model. Together with synthesized polarized signals in the Fe XIII 10746 Angstrom emission line, we find that an ad hoc correction of telescope and instrument-induced polarization crosstalk is possible under the assumption of a non-depolarizing optical system.Comment: Accepted for publication in Ap

    A Model-based Technique for Ad Hoc Correction of Instrumental Polarization in Solar Spectropolarimetry

    Full text link
    We present a new approach for correcting instrumental polarization by modeling the non-depolarizing effects of a complex series of optical elements to determine physically realizable Mueller matrices. Provided that the Mueller matrix of the optical system can be decomposed into a general elliptical diattenuator and general elliptical retarder, it is possible to model the cross-talk between both the polarized and unpolarized states of the Stokes vector and then use the acquired science observations to determine the best-fit free parameters. Here, we implement a minimization for solar spectropolarimetric measurements containing photospheric spectral lines sensitive to the Zeeman effect using physical constraints provided by polarized line and continuum formation. This model-based approach is able to provide an accurate correction even in the presence of large amounts of polarization cross-talk and conserves the physically meaningful magnitude of the Stokes vector, a significant improvement over previous ad hoc techniques.Comment: 16 pages, 4 figures, Accepted for publication in Ap

    Evidence of Non-Thermal Particles in Coronal Loops Heated Impulsively by Nanoflares

    Full text link
    The physical processes causing energy exchange between the Sun's hot corona and its cool lower atmosphere remain poorly understood. The chromosphere and transition region (TR) form an interface region between the surface and the corona that is highly sensitive to the coronal heating mechanism. High resolution observations with the Interface Region Imaging Spectrograph (IRIS) reveal rapid variability (about 20 to 60 seconds) of intensity and velocity on small spatial scales at the footpoints of hot dynamic coronal loops. The observations are consistent with numerical simulations of heating by beams of non-thermal electrons, which are generated in small impulsive heating events called "coronal nanoflares". The accelerated electrons deposit a sizable fraction of their energy in the chromosphere and TR. Our analysis provides tight constraints on the properties of such electron beams and new diagnostics for their presence in the nonflaring corona.Comment: Published in Science on October 17: http://www.sciencemag.org/content/346/6207/1255724 . 26 pages, 10 figures. Movies are available at: http://www.lmsal.com/~ptesta/iris_science_mov

    Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). II. Flares and Eruptions

    Get PDF
    Current state-of-the-art spectrographs cannot resolve the fundamental spatial (subarcseconds) and temporal (less than a few tens of seconds) scales of the coronal dynamics of solar flares and eruptive phenomena. The highest-resolution coronal data to date are based on imaging, which is blind to many of the processes that drive coronal energetics and dynamics. As shown by the Interface Region Imaging Spectrograph for the low solar atmosphere, we need high-resolution spectroscopic measurements with simultaneous imaging to understand the dominant processes. In this paper: (1) we introduce the Multi-slit Solar Explorer (MUSE), a spaceborne observatory to fill this observational gap by providing high-cadence (<20 s), subarcsecond-resolution spectroscopic rasters over an active region size of the solar transition region and corona; (2) using advanced numerical models, we demonstrate the unique diagnostic capabilities of MUSE for exploring solar coronal dynamics and for constraining and discriminating models of solar flares and eruptions; (3) we discuss the key contributions MUSE would make in addressing the science objectives of the Next Generation Solar Physics Mission (NGSPM), and how MUSE, the high-throughput Extreme Ultraviolet Solar Telescope, and the Daniel K Inouye Solar Telescope (and other ground-based observatories) can operate as a distributed implementation of the NGSPM. This is a companion paper to De Pontieu et al., which focuses on investigating coronal heating with MUSE

    An observational study of the formation and evolution of sunspots

    Get PDF
    Ph.D. University of Hawaii at Manoa 2011.Includes bibliographical references.This dissertation focuses on the problem of molecules and the horizontal balance of forces in sunspots. Sunspots are quasi-static features on the solar surface and can be considered to be in a state of equilibrium. The weaker gas pressure of the cool sunspot interior is horizontally supported against the higher pressure of the hotter quiet-Sun by a strong vertical magnetic field. However, some sunspots show a rapid increase in magnetic pressure relative to the temperature of the gas in the coolest regions of the sunspot, implying that an isothermal decrease in the gas pressure must have occurred. The current model of sunspots is unable to describe this deviation from the assumed equilibrium state of the magnetic field and thermal gas pressure observed in these sunspots. Another method of altering the pressure of the gas must be occurring. The formation of molecules in sunspots may be the key to solving this puzzle. The sunspot interior provides a cool environment where molecules can form in abundance. As atoms become bound into molecules the total particle number of the gas is decreased. A sufficiently large molecular fraction could significantly alter the properties of the sunspot plasma, and specifically provide a mechanism for concentrating the magnetic field by non-thermally lowering the gas pressure. I have investigated the equilibrium condition of sunspots of different sizes and in a variety of evolutionary phases through a Milne-Eddington inversion of spectropolarimetric observations of the Zeeman-split Fe I lines at 6302 and 15650 A to obtain their thermal and magnetic topology. I carried out a calculation of the detailed radiative transfer and chemical equilibrium of model sunspot atmospheres to determine the molecular gas fraction. Several sunspots show unambiguous cases of isothermal magnetic field intensification, which can only be explained by the formation or destruction of a large molecular population. All sunspots with magnetic fields stronger than 2500 G and temperatures cooler than 5800 K consistently show a signature of magnetic field over-concentration, consistent with molecular hydrogen formation of a few percent of the total gas fraction. The formation of this large molecular population has widespread implications for sunspot physics
    corecore