324 research outputs found

    Dialysis access-associated steal syndrome: The intraoperative use of duplex ultrasound scan

    Get PDF
    AbstractDialysis access-associated steal syndrome (DASS) is an uncommon but serious complication after the creation of an arteriovenous shunt for hemodialysis and is related to an excess perfusion of the fistula. Several surgical options have been described for DASS correction. To achieve an adequate distribution of the blood flow towards the fistula and the hand, intraoperative duplex ultrasound scan monitoring was used in this preliminary communication to control the surgical reduction of volume flow through the fistula. The shunt flow was not estimated with direct insonation of the shunt but calculated from the difference of the bilateral subclavian artery volume flow rates. This new technique has several advantages over a direct shunt evaluation that are discussed in this report. Three patients with DASS are described in whom the technique was successfully applied and led to a normalization of the hand perfusion and to the maintenance of a long-term patency of the fistula. (J Vasc Surg 2003;37:211-3.

    Rapid adaptation of the intrarenal resistance index after living donor kidney transplantation

    Get PDF
    Background. Limited data exist concerning changes of renal perfusion directly after kidney transplantation. Colour-coded duplex sonography is the accepted method to assess kidney perfusion after transplantation. A widely used, although unspecific, Doppler parameter is the intrarenal resistance index (RI). The aim of this study was to clarify the influence of different patient- and procedure-related factors on RI before and immediately after living kidney transplantation. Methods. In a prospective study, 80 living kidney transplantation donor-recipient pairs were included. RI was measured in the donor 1 to 3 days before nephrectomy and in the recipient during the first hour after transplantation to examine the influence of age, heart rate, duration of cold and warm ischaemia time and immunosuppressive medications. Results. Mean RI did not differ between donors and recipients. RI correlated with age, both in donors (r = 0.58, P < 0.001) and recipients (r = 0.39, P < 0.001). In recipients, 10 or more years younger than their donors (n = 24), an average decrease of 0.05 in RI compared to the donors' value was observed (P = 0.01). Heart rate, cold and warm ischaemia time and immunosuppressive medications had no influence on the recipient RI. In patients with delayed graft function, a significant increase in RI within 14 days was observed. However, the initial RI was not predictive of graft function. Conclusions. The transplanted kidney seems to be able to adjust its RI within a short time despite several potential harmful factors that can occur during the transplantatio

    The SBT6.1 subtilase processes the GOLVEN1 peptide controlling cell elongation

    Get PDF
    Maturation of GLV signaling peptides requires two SBT6 subtilases. SBT6 proteolytic activity is further regulated by the Serpin1 inhibitor, implying a complex network that controls cell elongation in Arabidopsis.The GOLVEN (GLV) gene family encode small secreted peptides involved in important plant developmental programs. Little is known about the factors required for the production of the mature bioactive GLV peptides. Through a genetic suppressor screen in Arabidopsis thaliana, two related subtilase genes, AtSBT6.1 and AtSBT6.2, were identified that are necessary for GLV1 activity. Root and hypocotyl GLV1 overexpression phenotypes were suppressed by mutations in either of the subtilase genes. Synthetic GLV-derived peptides were cleaved in vitro by the affinity-purified SBT6.1 catalytic enzyme, confirming that the GLV1 precursor is a direct subtilase substrate, and the elimination of the in vitro subtilase recognition sites through alanine substitution suppressed the GLV1 gain-of-function phenotype in vivo. Furthermore, the protease inhibitor Serpin1 bound to SBT6.1 and inhibited the cleavage of GLV1 precursors by the protease. GLV1 and its homolog GLV2 were expressed in the outer cell layers of the hypocotyl, preferentially in regions of rapid cell elongation. In agreement with the SBT6 role in GLV precursor processing, both null mutants for sbt6.1 and sbt6.2 and the Serpin1 overexpression plants had shorter hypocotyls. The biosynthesis of the GLV signaling peptides required subtilase activity and might be regulated by specific protease inhibitors. The data fit with a model in which the GLV1 signaling pathway participates in the regulation of hypocotyl cell elongation, is controlled by SBT6 subtilases, and is modulated locally by the Serpin1 protease inhibitor

    Risk factors for the carriage of Streptococcus infantarius subspecies infantarius isolated from African fermented dairy products

    Get PDF
    Streptococcus infantarius subsp. infantarius (Sii) has been identified as predominant lactic acid bacteria in spontaneously fermented dairy products (FDPs) in sub-Saharan Africa including Côte d'Ivoire. However, Sii belongs to the Streptococcus bovis/Streptococcus equinus complex (SBSEC). Most SBSEC members are assumed to be involved as opportunistic pathogens in serious diseases in both humans and animals. A population-based cross-sectional survey, including 385 participants was conducted in Korhogo, northern Côte d'Ivoire, to identify risk factors for Sii fecal carriage, including consumption of local FDPs. A structured questionnaire was used to gather participant's socio-demographic and economic characteristics, their relation to livestock and dietary habits. In addition, fresh stool and milk samples were collected. The identification of Sii was done using a SBSEC-specific PCR assay targeting 16S rRNA and groEL genes. The overall prevalence of SBSEC and Sii carriage was 23.2% (confidence interval CI 95% = 18.9-27.5) and 12.0% (CI 95% = 8.4-15.5) for stool, respectively. Prevalence of Sii was significantly higher in consumers of artisanal butter compared with non-consumers (57.1% vs 10.1%, odds ratio OR: 11.9, 95% CI: 3.9-36.6), as well as in persons handling livestock (OR = 3.9; 95% CI = 1.6-9.3) and livestock primary products (OR = 5.7; 95% CI = 2.3-14.3). The closer contact with livestock was a risk factor for Sii fecal carriage. Sii strains were isolated from fresh and fermented milk products with a prevalence of 30.4% and 45.4%, respectively. Analysis of Sii population structure through the SBSEC multi locus sequence typing assay revealed a close relationship across human and dairy isolates, possibly linked to a Kenyan human isolate. All these outcomes underline the interest of in-depth investigations on the ecology, potential reservoirs and pathways of contamination by Sii at the human-animal-environment interface in comparison to yet to be collected data from Europe, Asia and the Americas to further elucidate the various roles of Sii

    Network-driven plasma proteomics expose molecular changes in the Alzheimer’s brain

    Get PDF
    Background Biological pathways that significantly contribute to sporadic Alzheimer’s disease are largely unknown and cannot be observed directly. Cognitive symptoms appear only decades after the molecular disease onset, further complicating analyses. As a consequence, molecular research is often restricted to late-stage post-mortem studies of brain tissue. However, the disease process is expected to trigger numerous cellular signaling pathways and modulate the local and systemic environment, and resulting changes in secreted signaling molecules carry information about otherwise inaccessible pathological processes. Results To access this information we probed relative levels of close to 600 secreted signaling proteins from patients’ blood samples using antibody microarrays and mapped disease-specific molecular networks. Using these networks as seeds we then employed independent genome and transcriptome data sets to corroborate potential pathogenic pathways. Conclusions We identified Growth-Differentiation Factor (GDF) signaling as a novel Alzheimer’s disease-relevant pathway supported by in vivo and in vitro follow-up experiments, demonstrating the existence of a highly informative link between cellular pathology and changes in circulatory signaling proteins

    Network-Driven Plasma Proteomics Expose Molecular Changes in the Alzheimer\u27s Brain

    Get PDF
    Background: Biological pathways that significantly contribute to sporadic Alzheimer’s disease are largely unknown and cannot be observed directly. Cognitive symptoms appear only decades after the molecular disease onset, further complicating analyses. As a consequence, molecular research is often restricted to late-stage post-mortem studies of brain tissue. However, the disease process is expected to trigger numerous cellular signaling pathways and modulate the local and systemic environment, and resulting changes in secreted signaling molecules carry information about otherwise inaccessible pathological processes. Results: To access this information we probed relative levels of close to 600 secreted signaling proteins from patients’ blood samples using antibody microarrays and mapped disease-specific molecular networks. Using these networks as seeds we then employed independent genome and transcriptome data sets to corroborate potential pathogenic pathways. Conclusions: We identified Growth-Differentiation Factor (GDF) signaling as a novel Alzheimer’s disease-relevant pathway supported by in vivo and in vitro follow-up experiments, demonstrating the existence of a highly informative link between cellular pathology and changes in circulatory signaling proteins

    Destabilization of the Dystrophin-Glycoprotein Complex without Functional Deficits in α-Dystrobrevin Null Muscle

    Get PDF
    α-Dystrobrevin is a component of the dystrophin-glycoprotein complex (DGC) and is thought to have both structural and signaling roles in skeletal muscle. Mice deficient for α-dystrobrevin (adbn−/−) exhibit extensive myofiber degeneration and neuromuscular junction abnormalities. However, the biochemical stability of the DGC and the functional performance of adbn−/− muscle have not been characterized. Here we show that the biochemical association between dystrophin and β-dystroglycan is compromised in adbn−/− skeletal muscle, suggesting that α-dystrobrevin plays a structural role in stabilizing the DGC. However, despite muscle cell death and DGC destabilization, costamere organization and physiological performance is normal in adbn−/− skeletal muscle. Our results demonstrate that myofiber degeneration alone does not cause functional deficits and suggests that more complex pathological factors contribute to the development of muscle weakness in muscular dystrophy

    Regulation of Amyloid Precursor Protein Processing by the Beclin 1 Complex

    Get PDF
    Autophagy is an intracellular degradation pathway that functions in protein and organelle turnover in response to starvation and cellular stress. Autophagy is initiated by the formation of a complex containing Beclin 1 (BECN1) and its binding partner Phosphoinositide-3-kinase, class 3 (PIK3C3). Recently, BECN1 deficiency was shown to enhance the pathology of a mouse model of Alzheimer Disease (AD). However, the mechanism by which BECN1 or autophagy mediate these effects are unknown. Here, we report that the levels of Amyloid precursor protein (APP) and its metabolites can be reduced through autophagy activation, indicating that they are a substrate for autophagy. Furthermore, we find that knockdown of Becn1 in cell culture increases the levels of APP and its metabolites. Accumulation of APP and APP C-terminal fragments (APP-CTF) are accompanied by impaired autophagosomal clearance. Pharmacological inhibition of autophagosomal-lysosomal degradation causes a comparable accumulation of APP and APP-metabolites in autophagosomes. Becn1 reduction in cell culture leads to lower levels of its binding partner Pik3c3 and increased presence of Microtubule-associated protein 1, light chain 3 (LC3). Overexpression of Becn1, on the other hand, reduces cellular APP levels. In line with these observations, we detected less BECN1 and PIK3C3 but more LC3 protein in brains of AD patients. We conclude that BECN1 regulates APP processing and turnover. BECN1 is involved in autophagy initiation and autophagosome clearance. Accordingly, BECN1 deficiency disrupts cellular autophagy and autophagosomal-lysosomal degradation and alters APP metabolism. Together, our findings suggest that autophagy and the BECN1-PIK3C3 complex regulate APP processing and play an important role in AD pathology
    • …
    corecore