10,663 research outputs found

    Improved solution of the lidar equation utilizing particle counter measurements

    Get PDF
    The extraction of particle backscattering from incoherent lidar measurements poses some problems. In the case of measurements of the stratospheric aerosol layer the solution of the lidar equation is based on two assumptions which are necessary to normalize the measured signal and to correct it with the two-way transmission of the laser pulse. Normalization and transmission are tackled by adding the information contained in aerosol particle counter measurements of the University of Wyoming to the ruby lidar measurements at Garmisch-Partenkirchen. Calculated backscattering from height levels above 25 km for the El Chichon period will be compared with lidar measurements and necessary corrections. The calculated backscatter-to-extinction ratios are compared to those, which were derived from a comparison of published extinction values to measured lidar backscattering at Garmisch. These ratios were used to calculate the Garmisch lidar returns. For the period 4 to 12 months after the El Chichon eruption a backscater-to-extinction ratio of 0.026 1/sr was applied with smaller values before and after that time

    Disentanglement and decoherence in two-spin and three-spin systems under dephasing

    Get PDF
    We compare disentanglement and decoherence rates within two-spin and three-spin entangled systems subjected to all possible combinations of local and collective pure dephasing noise combinations. In all cases, the bipartite entanglement decay rate is found to be greater than or equal to the dephasing-decoherence rates and often significantly greater. This sharpens previous results for two-spin systems [T. Yu and J. H. Eberly Phys. Rev. B 68, 165322 (2003)] and extends them to the three-spin context.Comment: 17 page

    Examination of the Circle Spline Routine

    Get PDF
    The Circle Spline routine is currently being used for generating both two and three dimensional spline curves. It was developed for use in ESCHER, a mesh generating routine written to provide a computationally simple and efficient method for building meshes along curved surfaces. Circle Spline is a parametric linear blending spline. Because many computerized machining operations involve circular shapes, the Circle Spline is well suited for both the design and manufacturing processes and shows promise as an alternative to the spline methods currently supported by the Initial Graphics Specification (IGES)

    Hierarchical Temporal Representation in Linear Reservoir Computing

    Full text link
    Recently, studies on deep Reservoir Computing (RC) highlighted the role of layering in deep recurrent neural networks (RNNs). In this paper, the use of linear recurrent units allows us to bring more evidence on the intrinsic hierarchical temporal representation in deep RNNs through frequency analysis applied to the state signals. The potentiality of our approach is assessed on the class of Multiple Superimposed Oscillator tasks. Furthermore, our investigation provides useful insights to open a discussion on the main aspects that characterize the deep learning framework in the temporal domain.Comment: This is a pre-print of the paper submitted to the 27th Italian Workshop on Neural Networks, WIRN 201

    A new algorithm for recognizing the unknot

    Full text link
    The topological underpinnings are presented for a new algorithm which answers the question: `Is a given knot the unknot?' The algorithm uses the braid foliation technology of Bennequin and of Birman and Menasco. The approach is to consider the knot as a closed braid, and to use the fact that a knot is unknotted if and only if it is the boundary of a disc with a combinatorial foliation. The main problems which are solved in this paper are: how to systematically enumerate combinatorial braid foliations of a disc; how to verify whether a combinatorial foliation can be realized by an embedded disc; how to find a word in the the braid group whose conjugacy class represents the boundary of the embedded disc; how to check whether the given knot is isotopic to one of the enumerated examples; and finally, how to know when we can stop checking and be sure that our example is not the unknot.Comment: 46 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTVol2/paper9.abs.htm

    Optoelectronic Reservoir Computing

    Get PDF
    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an opto-electronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.Comment: Contains main paper and two Supplementary Material

    Tuning Interparticle Hydrogen Bonding in Shear-Jamming Suspensions: Kinetic Effects and Consequences for Tribology and Rheology

    Full text link
    The shear-jamming of dense suspensions can be strongly affected by molecular-scale interactions between particles, e.g. by chemically controlling their propensity for hydrogen bonding. However, hydrogen bonding not only enhances interparticle friction, a critical parameter for shear jamming, but also introduces (reversible) adhesion, whose interplay with friction in shear-jamming systems has so far remained unclear. Here, we present atomic force microscopy studies to assess interparticle adhesion, its relationship to friction, and how these attributes are influenced by urea, a molecule that interferes with hydrogen bonding. We characterize the kinetics of this process with nuclear magnetic resonance, relating it to the time dependence of the macroscopic flow behavior with rheological measurements. We find that time-dependent urea sorption reduces friction and adhesion, causing a shift in the shear-jamming onset. These results extend our mechanistic understanding of chemical effects on the nature of shear jamming, promising new avenues for fundamental studies and applications alike

    Learning Markov Decision Processes for Model Checking

    Full text link
    Constructing an accurate system model for formal model verification can be both resource demanding and time-consuming. To alleviate this shortcoming, algorithms have been proposed for automatically learning system models based on observed system behaviors. In this paper we extend the algorithm on learning probabilistic automata to reactive systems, where the observed system behavior is in the form of alternating sequences of inputs and outputs. We propose an algorithm for automatically learning a deterministic labeled Markov decision process model from the observed behavior of a reactive system. The proposed learning algorithm is adapted from algorithms for learning deterministic probabilistic finite automata, and extended to include both probabilistic and nondeterministic transitions. The algorithm is empirically analyzed and evaluated by learning system models of slot machines. The evaluation is performed by analyzing the probabilistic linear temporal logic properties of the system as well as by analyzing the schedulers, in particular the optimal schedulers, induced by the learned models.Comment: In Proceedings QFM 2012, arXiv:1212.345

    Where to go in the near future: diverging perspectives on online public service delivery

    Get PDF
    Although the electronic government is under heavy development, a clear vision doesn’t seem to exist. In this study 20 interviews among leaders in the field of e-government in the Netherlands resulted in different perspectives on the future of electronic public service delivery. The interviews revealed different objectives and interpretations of the presuppositions regarding citizens’ desires. Opinions about channel approaches and ‘trigger services’ appeared to vary. Furthermore, the respondents didn’t agree on the number of contact moments between citizen and government, had different opinions about digital skills, pled for various designs of the electronic government and placed the responsibility for electronic service delivery in different hands. Conclusion is that there is a lack of concepts on how to do things. Everybody talks about eGovernment, but all have different interpretations. \u

    Hysteretic clustering in granular gas

    Get PDF
    Granular material is vibro-fluidized in N=2 and N=3 connected compartments, respectively. For sufficiently strong shaking the granular gas is equi-partitioned, but if the shaking intensity is lowered, the gas clusters in one compartment. The phase transition towards the clustered state is of 2nd order for N=2 and of 1st order for N=3. In particular, the latter is hysteretic. The experimental findings are accounted for within a dynamical model that exactly has the above properties
    corecore