12 research outputs found

    Facile and versatile ligand analysis method of colloidal quantum dot

    Get PDF
    Colloidal quantum-dots (QDs) are highly attractive materials for various optoelectronic applications owing to their easy maneuverability, high functionality, wide applicability, and low cost of mass-production. QDs usually consist of two components: the inorganic nano-crystalline particle and organic ligands that passivate the surface of the inorganic particle. The organic component is also critical for tuning electronic properties of QDs as well as solubilizing QDs in various solvents. However, despite extensive effort to understand the chemistry of ligands, it has been challenging to develop an efficient and reliable method for identifying and quantifying ligands on the QD surface. Herein, we developed a novel method of analyzing ligands in a mild yet accurate fashion. We found that oxidizing agents, as a heterogeneous catalyst in a different phase from QDs, can efficiently disrupt the interaction between the inorganic particle and organic ligands, and the subsequent simple phase fractionation step can isolate the ligand-containing phase from the oxidizer-containing phase and the insoluble precipitates. Our novel analysis procedure ensures to minimize the exposure of ligand molecules to oxidizing agents as well as to prepare homogeneous samples that can be readily analyzed by diverse analytical techniques, such as nuclear magnetic resonance spectroscopy and gas-chromatography mass-spectrometry. © 2021, The Author(s).1

    Large Work Function Modulation of Monolayer MoS<sub>2</sub> by Ambient Gases

    No full text
    Although two-dimensional monolayer transition-metal dichalcogenides reveal numerous unique features that are inaccessible in bulk materials, their intrinsic properties are often obscured by environmental effects. Among them, work function, which is the energy required to extract an electron from a material to vacuum, is one critical parameter in electronic/optoelectronic devices. Here, we report a large work function modulation in MoS<sub>2</sub> via ambient gases. The work function was measured by an <i>in situ</i> Kelvin probe technique and further confirmed by ultraviolet photoemission spectroscopy and theoretical calculations. A measured work function of 4.04 eV in vacuum was converted to 4.47 eV with O<sub>2</sub> exposure, which is comparable with a large variation in graphene. The homojunction diode by partially passivating a transistor reveals an ideal junction with an ideality factor of almost one and perfect electrical reversibility. The estimated depletion width obtained from photocurrent mapping was ∼200 nm, which is much narrower than bulk semiconductors
    corecore