89 research outputs found

    Partial anomalous pulmonary venous connection with intact atrial septum in a child with ventricular septal defect: a case report

    Get PDF
    Partial anomalous pulmonary vein connection (PAPVC) is a rare congenital abnormal cardiac defect involving the pulmonary veins draining into the right atrium (RA) directly or indirectly by venous connection. Ninety percent of PAPVCs are accompanied by atrial septal defect (ASD). To our knowledge, there is no previous report of PAPVC with ventricular septal defect (VSD) without ASD in Korea, and in this paper, we report the first such case. A 2-day-old girl was admitted into the Chonnam National University Hospital for evaluation of a cardiac murmur. An echocardiogram revealed perimembranous VSD without ASD. She underwent patch closure of the VSD at 5 months of age. Although the VSD was completely closed, she had persistent cardiomegaly with right ventricular volume overload, as revealed by echocardiography. Three years later, cardiac catheterization and chest computed tomography revealed a PAPVC, with the right upper pulmonary vein draining into the right SVC. Therefore, correction of the PAPVC was surgically performed at 3 years of age. We conclude that it is important to suspect PAPVC in patients with right ventricular volume overload, but without ASD

    Hashimoto thyroiditis with an unusual presentation of cardiac tamponade in Noonan syndrome

    Get PDF
    Noonan syndrome is an autosomal dominant, multisystem disorder. Autoimmune thyroiditis with hypothyroidism is an infrequent feature in patients with Noonan syndrome. A 16-year-old boy was admitted because of chest discomfort and dyspnea; an echocardiogram revealed pericardial effusion. Additional investigations led to a diagnosis of severe hypothyroidism due to Hashimoto thyroiditis. The patient was treated with L-thyroxine at 0.15 mg daily. However, during admission, he developed symptoms of cardiac tamponade. Closed pericardiostomy was performed, after which the patient's chest discomfort improved, and his vital signs stabilized. Herein, we report a case of an adolescent with Noonan syndrome, who was diagnosed with Hashimoto thyroiditis with an unusual presentation of cardiac tamponade

    Morphine Postconditioning Attenuates ICAM-1 Expression on Endothelial Cells

    Get PDF
    The purpose of this study is to determine 1) whether morphine postconditiong (MPostC) can attenuate the intercellular adhesion molecules-1 (ICAM-1) expression after reoxygenation injury and 2) the subtype(s) of the opioid receptors (ORs) that are involved with MPostC. Human umbilical vein endothelial cells (HUVECs) were subjected to 6 hr anoxia followed by 12 hr reoxygenation. Three morphine concentrations (0.3, 3, 30 µM) were used to evaluate the protective effect of MPostC. We also investigated blockading the OR subtypes' effects on MPostC by using three antagonists (a µ-OR antagonist naloxone, a κ-OR antagonist nor-binaltorphimine, and a δ-OR antagonist naltrindole) and the inhibitor of protein kinase C (PKC) chelerythrine. As results, the ICAM-1 expression was significantly reduced in the MPostC (3, 30 µM) groups compared to the control group at 1, 6, 9, and 12 hours reoxygenation time. As a consequence, neutrophil adhesion was also decreased after MPostC. These effects were abolished by coadministering chelerythrine, nor-binaltorphimine or naltrindole, but not with naloxone. In conclusion, it is assumed that MPostC could attenuate the expression of ICAM-1 on endothelial cells during reoxygenation via the κ and δ-OR (opioid receptor)-specific pathway, and this also involves a PKC-dependent pathway

    Reactive Oxygen Species Enhance TLR10 Expression in the Human Monocytic Cell Line THP-1

    Get PDF
    We investigated TLR10 expression in human monocytes, THP-1 cells, cultured in hypoxia (3% O2). Levels of both TLR10 mRNA and protein in THP-1 cells cultured in hypoxia were significantly higher than those cultured in normoxia (20% O2). We examined intracellular reactive oxygen species (ROS) content in hypoxic cells, and TLR10 expression in cells treated with hydrogen peroxide (H2O2), to determine whether the increase in TLR10 expression observed with hypoxia was due to an increase in intracellular ROS levels. We found that the level of intracellular ROS in cells subject to hypoxia was significantly higher than in normoxia. Experiments with ROS synthesis inhibitors revealed that hypoxia induced ROS production is mainly due to NADPH oxidase activity. TLR10 mRNA expression was increased by treatment with H2O2 at concentrations ranging from 50 to 250 μM. We screened the TLR10 promoter and found putative binding sites for transcription factors (TFs), such as NF-κB, NF-AT and AP-1. Next, we examined TF activities using a luciferase reporter assay. Activities of NF-κB, NF-AT and AP-1 in the cells treated with H2O2 were significantly higher than in untreated cells. The experiment with TF inhibitors revealed that ROS-induced upregulation of TLR10 expression is mainly due to NF-κB activation. Overall, our results suggest that hypoxia or ROS increase TLR10 expression in human monocytes and the transcriptional activities of NF-κB are involved in this process. Therefore, it is suggested that ROS produced by various exogenous stimuli may play a crucial role in the regulation of expression and function of TLR10 as second messengers

    Apolipophorin-III Mediates Antiplasmodial Epithelial Responses in Anopheles gambiae (G3) Mosquitoes

    Get PDF
    Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes.We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm). We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain) mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold.There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection

    TIMP-2 Fusion Protein with Human Serum Albumin Potentiates Anti-Angiogenesis-Mediated Inhibition of Tumor Growth by Suppressing MMP-2 Expression

    Get PDF
    TIMP-2 protein has been intensively studied as a promising anticancer candidate agent, but the in vivo mechanism underlying its anticancer effect has not been clearly elucidated by previous works. In this study, we investigated the mechanism underlying the anti-tumor effects of a TIMP-2 fusion protein conjugated with human serum albumin (HSA/TIMP-2). Systemic administration of HSA/TIMP-2 effectively inhibited tumor growth at a minimum effective dose of 60 mg/kg. The suppressive effect of HSA/TIMP-2 was accompanied by a marked reduction of in vivo vascularization. The anti-angiogenic activity of HSA/TIMP-2 was directly confirmed by CAM assays. In HSA/TIMP-2-treated tumor tissues, MMP-2 expression was profoundly decreased without a change in MT1-MMP expression of PECAM-1-positive cells. MMP-2 mRNA was also decreased by HSA/TIMP-2 treatment of human umbilical vein endothelial cells. Zymographic analysis showed that HSA/TIMP-2 substantially decreased extracellular pro-MMP-2 activity (94–99% reduction) and moderately decreased active MMP-2 activity (10–24% reduction), suggesting MT1-MMP-independent MMP-2 modulation. Furthermore, HSA/TIMP-2 had no effect on in vitro active MMP-2 activity and in vivo MMP-2 activity. These studies show that HSA/TIMP-2 potentiates anti-angiogenic activity by modulating MMP-2 expression, but not MMP-2 activity, to subsequently suppress tumor growth, suggesting an important role for MMP-2 expression rather than MMP-2 activity in anti-angiogenesis

    The 5p15.33 Locus Is Associated with Risk of Lung Adenocarcinoma in Never-Smoking Females in Asia

    Get PDF
    Genome-wide association studies of lung cancer reported in populations of European background have identified three regions on chromosomes 5p15.33, 6p21.33, and 15q25 that have achieved genome-wide significance with p-values of 10−7 or lower. These studies have been performed primarily in cigarette smokers, raising the possibility that the observed associations could be related to tobacco use, lung carcinogenesis, or both. Since most women in Asia do not smoke, we conducted a genome-wide association study of lung adenocarcinoma in never-smoking females (584 cases, 585 controls) among Han Chinese in Taiwan and found that the most significant association was for rs2736100 on chromosome 5p15.33 (p = 1.30×10−11). This finding was independently replicated in seven studies from East Asia totaling 1,164 lung adenocarcinomas and 1,736 controls (p = 5.38×10−11). A pooled analysis achieved genome-wide significance for rs2736100. This SNP marker localizes to the CLPTM1L-TERT locus on chromosome 5p15.33 (p = 2.60×10−20, allelic risk = 1.54, 95% Confidence Interval (CI) 1.41–1.68). Risks for heterozygote and homozygote carriers of the minor allele were 1.62 (95% CI; 1.40–1.87), and 2.35 (95% CI: 1.95–2.83), respectively. In summary, our results show that genetic variation in the CLPTM1L-TERT locus of chromosome 5p15.33 is directly associated with the risk of lung cancer, most notably adenocarcinoma
    corecore