74 research outputs found

    Multiresponsive behavior of functional poly(p-phenylene vinylene)s in water

    Get PDF
    The multiresponsive behavior of functionalized water-soluble conjugated polymers (CPs) is presented with potential applications for sensors. In this study, we investigated the aqueous solubility behavior of water-soluble CPs with high photoluminescence and with a particular focus on their pH and temperature responsiveness. For this purpose, two poly(phenylene vinylene)s (PPVs)-namely 2,5-substituted PPVs bearing both carboxylic acid and methoxyoligoethylene glycol units-were investigated, with different amount of carboxylic acid units. Changes in the pH and temperature of polymer solutions led to a response in the fluorescence intensity in a pH range from 3 to 10 and for temperatures ranging from 10 to 85 degrees C. Additionally, it is demonstrated that the polymer with the largest number of carboxylic acid groups displays upper critical solution temperature (UCST)-like thermoresponsive behavior in the presence of a divalent ion like Ca2+. The sensing capability of these water-soluble PPVs could be utilized to design smart materials with multiresponsive behavior in biomedicine and soft materials

    Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    Get PDF
    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(l-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, hmax 75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells

    Thermoresponsive laterally-branched polythiophene phenylene derivative as water-soluble temperature sensor

    Get PDF
    Polymers with thermoresponsive properties have received a strong interest due to their potential applications. Here we report the synthesis and characterisation of a water soluble and thermoresponsive polythiophene derivative. Firstly, a polythiophene phenylene (PThP) functionalised with an initiator for atom transfer radical polymerization (ATRP) and azide groups on the side chains was synthesised. Secondly, ATRP was employed to graft poly(ethylene glycol) methacrylate (PEGMA) from the PThP to create a permanently water soluble conjugated polymer. Further functionalisation was then conducted through the `click' reaction with propargyl functionalised poly(2-n-propyl-2-oxazoline) to introduce thermoresponsivness. The polymer displayed lower critical solution temperature (LCST) behavior, as revealed by fluorescence and UV-Vis spectroscopy with potential use as soluble polymeric thermometer

    Effect of gelatin concentration, ribose and glycerol additions on the electrospinning process and physicochemical properties of gelatin nanofibers

    Get PDF
    Rheological properties of gelatin-based solutions containing different concentrations of ribose and/or glycerol were assessed before electrospun mats were manufactured and their properties investigated. Characterization included morphology, X-ray diffraction, Fourier transform infrared, solubility, swelling, the release of Maillard reaction (MR) products and their antioxidant activity. Gelatin concentrations >= 16 % w/v favoured the formation of smooth nanofibres in the electrospinning process due to their higher viscosity than for gelatin concentrations <= 14 % w/v. The diameters of the nanofibres were between 300 and 400 nm, irrespective of the concentration of gelatin and the additives. Heat treatments (80-110 degrees C) of the samples induced MR between gelatin and ribose, which provided the mats with water stability. Nevertheless, the fibrous morphology only remained for those mats heat-treated at 110 and 100 degrees C and containing 10 and 20 wt% ribose, respectively, after sample immersion in water. Heat treatment at 110 degrees C, along with glycerol addition, resulted in a decrease of solubility (from 100 to similar to 9 %) and provided a water absorption capacity (1,500-2,500 %), due to the crosslinking of ribose and glycerol with gelatin. Release of MR antioxidant compounds from the mats into water exhibited DPPH radical scavenging activity values up to 38 % (0.61 GAE mu g/mL).The authors would like to thank the Ministry of Business, Innovation and Employment of New Zealand (MBIE, Biocide Toolbox programme) and the Basque Government (IT1658-22) for funding. A.E. thanks the State Research Agency of Spain within the Juan de la Cierva-Incorporation action (IJC2019-039697I)

    The Applications of Solid-State NMR to Conducting Polymers. The Special Case on Polyaniline

    No full text
    Polyaniline is one of the most well studied conducting polymers due to its advanced electrical, chemical, redox and morphological properties. The high conductivity of regular polyaniline, when partially oxidized and doped under acidic conditions, has been associated with the formation of unique electronic states known as polarons and bipolarons. Alternative aniline oxidation products and interesting nanotube and nanorod forms have been observed as the synthesis conditions are varied. Solid-state NMR has offered great opportunities for structural investigations and the determination of molecular dynamics in such a complex and diverse material. This review summarizes various applications of solid-state NMR techniques to polyaniline and its derivatives and the information that can be obtained by solid-state NMR
    corecore