25 research outputs found

    Homology modeling and in vivo functional characterization of the zinc permeation pathway in a heavy metal P-type ATPase

    Full text link
    The P1B ATPase Heavy Metal ATPase 4 (HMA4) is responsible for zinc and cadmium translocation from roots to shoots in the plant Arabidopsis thaliana. It couples ATP hydrolysis to cytosolic domain movements enabling metal transport across the membrane. Thanks to high conservation level within the P-type ATPase family, the role of the HMA4 cytoplasmic catalytic domains can be inferred from well characterized pumps. In contrast, the function of its terminal cytosolic extensions as well as the metal permeation mechanism through the membrane remains elusive. Here, homology modeling of the HMA4 transmembrane region was conducted based on the crystal structure of a ZntA bacterial homolog. The analysis highlighted amino acids forming a metal permeation pathway, whose importance was subsequently investigated functionally through mutagenesis and complementation experiments in plants. Although the zinc pathway displayed overall conservation among the two proteins, significant differences were observed, especially in the entrance area with altered electronegativity and the presence of a salt bridge/H-bond network. The analysis also newly identified amino acids whose mutation results in total or partial loss of the protein function. In addition, comparison of zinc and cadmium accumulation in shoots of A. thaliana complemented lines revealed a number of HMA4 mutants exhibiting different abilities in zinc and cadmium translocation. These observations could be instrumental to design low cadmium accumulating crops, hence decreasing human cadmium exposure

    Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≥30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≥90 days, chronic dialysis for ≥90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie

    Global variations in diabetes mellitus based on fasting glucose and haemogloblin A1c

    Get PDF
    Fasting plasma glucose (FPG) and haemoglobin A1c (HbA1c) are both used to diagnose diabetes, but may identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening had elevated FPG, HbA1c, or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardised proportion of diabetes that was previously undiagnosed, and detected in survey screening, ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the agestandardised proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global gap in diabetes diagnosis and surveillance.peer-reviewe

    Natural variation in nutrient homeostasis mechanisms in Chlamydomonas

    Full text link
    Natural variation among individuals and populations exist in all species, playing key roles in response to environmental stress and adaptation. This natural variation can be exploited to identify genetic variants affecting important biological processes or controlling traits of economical interest in sectors such as agriculture and healthcare. Micro- and macro-nutrients have a wide range of functions in photosynthetic organisms and mineral nutrition plays thus a sizable role in biomass production. To maintain nutrient concentrations inside the cell within physiological limits and prevent the detrimental effects of deficiency or excess, complex homeostatic networks have evolved in photosynthetic cells. Chlamydomonas is an eukaryotic photosynthetic model for studying such mechanisms. In this work, twenty-four Chlamydomonas strains, comprising field isolates and laboratory strains, are used to examine intraspecific differences in nutrient homeostasis. Mixotrophy (TAP medium) isused as full nutrition control, and 10 deprivation conditions were tested: autotrophy (TMP medium, -acetate), macronutrient deprivation (-Ca, -Mg, -N, -P, -S), and micronutrient deprivation (-Cu, -Fe, -Mn, -Zn). Growth and the ionome are quantified upon 96h culture in deprivation media. Growth differences among strains are observable, but relatively limited, whereas important variation in cellular nutrient accumulation is observed. Interestingly, similar growth is accompanied by highly divergent ionome among a number of strains, pointing towards different deprivation management strategies. Further characterization of this variation photosynthesis efficiency measurements will be presented.Green MAGI

    Relationships between vocal ontogeny and vocal tract anatomy in harbour seals (Phoca vitulina)

    Get PDF
    Understanding the origins and evolution of human speech benefits from a multidisciplinary and comparative approach. Research on animal models has already provided some valuable insight into the biological underpinnings of vocal communication. One important focus in the field of animal communication is sound production. The current literature on this topic hosts a great number of studies on avian species and our closer relatives, non-human primates. However, many pinniped species have been reported to have wide vocal repertoires, often producing call types in specific behavioral contexts (Ralls et al., 1985; Mathevon et al., 2017; Charrier et al., 2009). In fact, the vocal abilities of pinnipeds are better than was historically believed (Ravignani et al., 2016). Moreover, pinnipeds are phylogenetically closer to humans than the well-studied birds (O’Leary et al, 2013) and share some anatomical similarities to the human vocal apparatus (Fitch, 2000). Here, we: (i) report on longitudinal data on vocal ontogeny in harbor seal pups, (ii) complement the bioacoustic findings with results from a large anatomical data set of larynges, and (iii) critically compare our findings with available literature on harbor seal sound production. Taken together, they suggest that phocids are good candidates for animal models in future research on the evolution of human speech

    ZRT-IRT-Like PROTEIN 6 expression perturbs local ion homeostasis in flowers and leads to anther indehiscence and male sterility.

    Full text link
    peer reviewedMetallic micronutrients are essential throughout the plant life cycle. Maintaining metal homeostasis in plant tissues requires a highly complex and finely tuned network controlling metal uptake, transport, distribution and storage. Zinc and cadmium hyperaccumulation, such as observed in the model plant Arabidopsis halleri, represents an extreme evolution of this network. Here, non-ectopic overexpression of the A. halleri ZIP6 (AhZIP6) gene, encoding a zinc and cadmium influx transporter, in Arabidopsis thaliana enabled examining the importance of zinc for flower development and reproduction. We show that AhZIP6 expression in flowers leads to male sterility resulting from anther indehiscence in a dose-dependent manner. The sterility phenotype is associated to delayed tapetum degradation and endothecium collapse, as well as increased magnesium and potassium accumulation and higher expression of the MHX gene in stamens. It is rescued by the co-expression of the zinc efflux transporter AhHMA4, linking the sterility phenotype to zinc homeostasis. Altogether, our results confirm that AhZIP6 is able to transport zinc in planta and highlight the importance of fine-tuning zinc homeostasis in reproductive organs. The study illustrates how the characterization of metal hyperaccumulation mechanisms can reveal key nodes and processes in the metal homeostasis network
    corecore