19 research outputs found

    Efficient and Effective Multi-Objective Optimization for Real-Time Multi-Task Systems

    Get PDF
    Embedded real-time multi-task systems must often not only comply with timing constraints but also need to meet energy requirements. However, optimizing energy consumption might lead to higher Worst-Case Execution Time (WCET), leading to an un-schedulable system, as frequently executed code can easily differ from timing-critical code. To handle such an impasse in this paper, we formulate a Metaheuristic Algorithm-based Multi-objective Optimization (MAMO) for multi-task real-time systems. But, performing multiple WCET, energy, and schedulability analyses to solve a MAMO poses a bottleneck concerning compilation times. Therefore, we propose two novel approaches - Path-based Constraint Approach (PCA) and Impact-based Constraint Approach (ICA) - to reduce the solution search space size and to cope with this problem. Evaluations showed that PCA and ICA reduced compilation times by 85.31% and 77.31%, on average, over MAMO. For all the task sets, out of all solutions found by ICA-FPA, on average, 88.89% were on the final Pareto front

    Towards Multi-Objective Dynamic SPM Allocation

    Get PDF

    Menaquinone-7: Wide Ranging Physiological Relevance in Muscle and Nerve Health

    Get PDF
    Menaquinone-7 plays a significant role in cardiovascular and bone health. In recent times there is a growing interest in understanding the role of Menaquinone-7 in health and diseases. Several population-based studies have reported specific health effects of the long-chain menaquinones, notably MK-7, MK-8, and MK-9. There are several epidemiological studies, clinical trials, along with in vivo and in vitro studies confirming the role of Menaquinone-7 in health and diseases. More recently, research group at Synergia Life Sciences has discovered a wider role for Menaquinone-7 in energy homeostasis (VO2max), peripheral neuropathy, muscle cramps and mitochondrial respiration not only through improvement of the electron transport but also the perfusion improving oxygen availability. In the current chapter, the authors have discussed the wider physiological role of Menaquinone-7 highlighting the recent research with Menaquinone-7 in the areas of Muscle and Nerve Health

    Reasoning about non-functional properties using compiler intrinsic function annotations

    Get PDF
    Funding: European Union’s Horizon 2020 research and innovation programme under grant agreement No 779882.Embedded systems often need to adhere to time and energy constraints. With the increasing popularity of embed-ded systems, the interest in evaluating and optimizing non-functional properties like execution time and energy of these systems is increasing. In this paper, we describe a Resource-usage Estimate Expression Language (REEL), which allows the user to arguea bout these properties, within the source code, in a compiler understandable manner. Furthermore, we discuss the integration of REEL within a compiler framework. We, also show the propagation of REEL annotations within the compiler, and how they can be exploited to make decisions based on the non-functional properties within the source code. Finally, we explore REEL’s potential to perform ILP-based optimizations.Postprin

    The TeamPlay project : analysing and optimising time, energy, and security for cyber-physical systems

    Get PDF
    Funding: This work was supported by the EU Horizon-2020 project TeamPlay (https://www.teamplay-h2020.eu), grant #779882.Non-functional properties, such as energy, time, and security (ETS) are becoming increasingly important for the programming of Cyber-Physical Systems (CPS). This paper describes TeamPlay, a research project funded under the EU Horizon 2020 programme between January 2018 and June 2021.TeamPlay aimed to provide the system designer with a toolchain for developing embedded applications where ETS properties are first-class citizens, allowing the developer to reflect directly on energy, time and security properties at the source code level. In this paper we give an overview of the TeamPlay methodology, introduce the challenges and solutions of our approach and summarise the results achieved. Overall, applying our TeamPlay methodology led to an improvement of up to 18% performance and 52% energy usage over traditional approaches.Postprin

    Studies on pollen micro-morphology, pollen storage methods, and cross-compatibility among grape (Vitis spp.) genotypes

    Get PDF
    The knowledge of pollen morphology, suitable storage condition, and species compatibility is vital for a successful grapevine improvement programme. Ten grape genotypes from three different species, viz., Vitis vinifera L., Vitis parviflora Roxb., and Vitis champini Planc., were studied for their pollen structure and pollen storage with the objective of determining their utilization in grape rootstock improvement programs. Pollen morphology was examined through the use of a scanning electron microscope (SEM). The viability of the pollen was assessed using 2,3,5-triphenyltetrazolium chloride (TTC). In vitro pollen germination was investigated using the semi-solid medium with 10 % sucrose, 100 mg/L boric acid, and 300 mg/L calcium nitrate. The results revealed variations in pollen micro-morphology in 10 genotypes, with distinct pollen dimensions, shapes, and exine ornamentation. However, species-wise, no clear difference was found for these parameters. Pollen of V. parviflora Roxb. and Dogridge was acolporated and did not germinate. The remaining eight genotypes exhibited tricolporated pollen and showed satisfactory in vitro pollen germination. Storage temperature and duration interactions showed that, at room temperature, pollen of most of the grape genotypes can be stored for up to 1 day only with an acceptable pollen germination rate (>30 %). However, storage for up to 7 days was successfully achieved at 4 °C, except for ‘Pearl of Csaba’. The most effective storage conditions were found to be at −20 °C and −196 °C (in liquid N2), enabling pollen storage for a period of up to 30 days, and can be used for pollination to overcome the challenge of asynchronous flowering. Four interspecific combinations were studied for their compatibility, among which V. parviflora Roxb. × V. vinifera L. (Pusa Navrang) and V. parviflora Roxb. × V. champini Planc. (Salt Creek) showed high cross-compatibility, offering their potential use for grape rootstock breeding. However, V. parviflora Roxb. × V. vinifera L. (Male Hybrid) recorded the lowest compatibility index among studied crosses. In the case of self-pollinated flowers from V. parviflora Roxb. and V. parviflora Roxb. × V. champini Planc. (Dogridge), pollen failed to germinate on the stigma due to male sterility caused by acolporated pollen. As a result, the flowers of these genotypes functioned as females, which means they are ideal female parents for grape breeding without the need for the tedious process of emasculation
    corecore