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Abstract
Embedded real-time multi-task systems must often not only comply with timing constraints but also
need to meet energy requirements. However, optimizing energy consumption might lead to higher
Worst-Case Execution Time (WCET), leading to an un-schedulable system, as frequently executed
code can easily differ from timing-critical code. To handle such an impasse in this paper, we formulate
a Metaheuristic Algorithm-based Multi-objective Optimization (MAMO) for multi-task real-time
systems. But, performing multiple WCET, energy, and schedulability analyses to solve a MAMO
poses a bottleneck concerning compilation times. Therefore, we propose two novel approaches –
Path-based Constraint Approach (PCA) and Impact-based Constraint Approach (ICA) – to reduce
the solution search space size and to cope with this problem. Evaluations showed that PCA and
ICA reduced compilation times by 85.31% and 77.31%, on average, over MAMO. For all the task
sets, out of all solutions found by ICA–FPA, on average, 88.89% were on the final Pareto front.
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1 Introduction

Modern real-time embedded systems are subject to strict constraints and must meet functional
and temporal requirements, such as execution time and energy consumption. Failure to meet
such constraints might lead to disastrous consequences, e.g., airbag deployment systems.
For multi-task systems, schedulability is an important criterion. This paper proposes
multi-objective optimization for multi-task systems that simultaneously considers WCET,
energy, and schedulability for multi-task systems. The proposed framework utilizes two
metaheuristic algorithms, namely Strength Pareto Evolutionary Algorithm (SPEA) [26]
and Flower Pollination Algorithm (FPA) [25], to solve a static Scratchpad Memory (SPM)
allocation-based MAMO problem.

A program might have different WCET- and energy-critical paths. Moreover, minimizing
WCET and energy of one particular task might negatively affect others, resulting in an
un-schedulable system. Furthermore, the previous single-objective optimizations treated
schedulability as a constraint, which could limit design space exploration. Therefore, the
proposed framework considers schedulability as an objective, which enables the identification
of a Pareto front containing completely- and partially-scheduled multi-task systems. Depend-
ing on hard- and soft-real-time requirements, in the end, the system designer could choose
the needed Pareto-optimal solution.
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The presented MAMO approach is iterative, requires objective evaluations at every
iteration, and deals with three objectives, the analysis for which can be very time-consuming.
To address this issue, we introduce two novel objective-dependent approaches that generate
constraints at each iteration and reduce the solution space size and the total compilation
time. The first approach, PCA, uses worst- and average-case execution path information
to constrain the solution space, and the second approach, ICA, uses an impact metric to
constrain and reduce the solution space size. Evaluations in this paper clearly show that
worst- and average-case execution information can be utilized to improve MAMO speed and
solution quality. Therefore, the key contributions of this paper are:

We formulated and solved SPM allocation-based 3-dimensional MAMO problem.

We proposed two approaches – PCA and ICA – to reduce the solution space size.

PCA and ICA reduced compilation times by 85.31% and 77.31%, on average, over MAMO.

On average, 88.89% solutions found by ICA–FPA were on the final Pareto front.
This paper is outlined as follows: Sec. (2) overviews the related work. Sec. (3) defines
the MAMO problem for static SPM allocation. Sec. (4) introduces the MAMO framework.
Sec. (5) and (6) propose PCA and ICA, respectively. Sec. (7) presents the evaluation results.
Sec. (8) present conclusions and a future work discussion.

2 Related Work

In the past, many approaches focused on SPM allocation-based single-objective WCET-
or energy-aware single-task optimizations [2, 7, 12, 14, 15, 22]. Moreover, some research
has considered schedulability-aware single objective optimization for multi-task systems,
where schedulability is treated as a constraint [16, 17]. In contrast, this paper proposes a
compiler-level multi-objective optimization for multi-task systems which can simultaneously
minimize WCET, energy consumption, and schedulability objectives.

Heuristic approaches like greedy algorithms may not be optimal for multi-objective
optimizations, and ILP-based approaches are well-suited for single-objective optimization.
Therefore, we use metaheuristic algorithms that employ problem-independent search strategies
to solve the MAMO problem. Zitzler et al. [26] introduced the SPEA algorithm, where fitness
assignment is done based on the co-evolution principle. FPA, inspired by the pollination pro-
cess seen in flowering plants, is a Nature-Inspired metaheuristic Algorithm (NIA) introduced
by Yang et al. [24]. SPEA outperforms other EAs such as NSGA, VEGA, etc. [27], and FPA
performed better than VEGA, NSGA-II, MODE, etc. [25]. Therefore, in this paper, we chose
to use SPEA and FPA to solve the MAMO problem.

Evaluating every solution iteratively using metaheuristics can pose a huge bottleneck.
In such scenarios, machine learning techniques can be used to predict WCET and energy
objectives [10, 21]. But, their accuracy varies on hyperparameter tuning, data sample size,
and the underlying machine learning model. Previously, we proposed an approximation
model to approximate WCET and energy consumption of a program, which was used to
perform SPM allocation [13]. This approximation model relies on the underlying compiler
optimization, i.e., SPM allocation, and is not generic to any compiler-level optimization. In
this paper, we propose two approaches that rely on the objectives of MAMO, specifically
WCET and energy and do not rely on the underlying compiler optimization.
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3 Multi-Task Multi-Objective Problem

In this section, we propose a 3-dimensional MAMO problem for a multi-task system, where
we treat schedulability as an objective to minimize rather than a constraint, which allows for
better solution space exploration and maintains pressure on metaheuristic algorithms during
solution selection. Treating schedulability as a constraint might lead to the rejection of
solutions that violate this constraint and hinder proper solution space exploration. Moreover,
as the schedulability objective depends on WCET, we could consider only schedulability as a
minimization objective, but it could also hinder solution space exploration. For example,
a multi-task system could become schedulable, and more schedulable solutions with lower
WCET values could exist within the solution space. Lastly, WCET and energy consumption
objectives can contradict each other. Therefore, we simultaneously consider WCET, energy
consumption, and schedulability as objectives. The proposed MAMO problem for a multi-task
system is mathematically formulated as follows:

min
x

F (x) = (F1(x), F2(x), F3(x))

subject to g(x) =
T∑

t=1

pt∑
v=1

Btv xtv − SSP M −
T∑

t=1

pt−1∑
v=1

stv |xtv − xtv+1| ≤ 0
(1)

where x = (x1, .., xT ) ∈ {0, 1}d is a d-dimensional binary decision vector for a multi-task set
Γ. xt is a binary decision vector for a single task τ t ∈ Γ, where t = 1, T , and T is the total
number of tasks. SPM allocation is a compiler optimization, where we move Basic Blocks
(BB) from slow Flash to SPM. The decision of placing a BB in SPM or Flash is realized by
an element xtv ∈ {0, 1} of the decision vector, where v = 1, pt, pt is the total number of BBs
in the tth task, and d =

∑T
t=1

∑pt

v=1 v is the total number of BBs in the multi-task system.
g(x) ≤ 0 is the SPM size constraint condition, where Btv is the code size of BBtv , BBtv

is the vth BB in the tth task, and SSP M represents the SPM size. The term |xtv − xtv+1|
determines if extra jump correction cost is needed, i.e., if tth

v BB and the succeeding (tv +1)th

BB are in different memories, then we need to perform jump correction and add the extra
jump correction cost [18]. Furthermore, stv is an architecture-dependent term representing
the jump correction code size. For ARM7TDMI architecture, stv is modeled as follows:
stv = 16 if the basic block BBtv ends with a jump instruction, and in case of calls, conditional
jumps, or fall-though instructions stv = 16. Extra spill code is added if a free register is not
available, which increments the jump correction cost, i.e., stv + = 4.

F (x) = (F1(x), F2(x), F3(x)) is the 3-dimensional objective function. F1(x) =
∑T

t=1 W t

and F2(x) =
∑T

t=1 Et are the total WCET and energy values for the binary decision vector
x, where W t and Et are WCET and energy consumption of task τ t ∈ Γ, respectively.
F3(x) =

∑T
t=1 ρtW

t is the schedulability objective. ρ ∈ {0, 1}T is a T -dimensional binary
vector, where 1′s indicate that the task τ t is a task removed from Γ, i.e., τ t ∈ Γr, where Γr

denotes a set of tasks removed from Γ, such that the system of remaining tasks is schedulable.
We use the ILP-based schedulability analyzer [16] to calculate the number of tasks needed
to be removed from the system to achieve schedulability. Accordingly, if a system with T

tasks is schedulable and all the tasks safely meet their deadlines, the analyzer will return
0. Contrary, in a worst-case scenario, the analysis will return T . MAMO returns a set of
Pareto-optimal solutions that can be fully or partially schedulable and indifferent in terms of
WCET and energy, which allows the system designer to choose a suitable solution from the
set of Pareto-optimal binaries based on the requirements during runtime.

WCET 2023
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Algorithm 1 SPM allocation-based MAMO.

1: Initialization: Initialize the initial population, perform jump corrections, and evaluate them.
2: Input: Initialized population and stopping criteria
3: Output: Pareto-optimal solution set
4: while stopping criteria is not fulfilled do ▷ Iterate over all generations
5: for j = 1 : N do ▷ Iterate over all individuals
6: Update the individual using update operators
7: Repair the individual if needed and perform jump correction
8: Evaluate the individual
9: Using the selection operator, update to next generation

4 Multi-objective optimization

To solve the compiler-level MAMO problem for multi-task systems, we use the WCET-aware
C Compiler (WCC) [6] framework. We solve the MAMO problem using a metaheuristic
algorithm and try to minimize WCET, energy consumption, and schedulability. Let X ⊂
{0, 1}d be the search space of the MAMO defined in Sec. (3). Pi ⊂ X is the population set
with N individuals at generation i = 1, M , where M is the maximum number of generations.
xi,j ∈ {0, 1}d is a d-dimensional binary individual vector at generation i, where j = 1, N .

Algorithm (1) presents the SPM allocation-based MAMO. The problem formulation
presented in Sec. (3) is used to initialize MAMO (Line 1). After initialization, we solve
MAMO by calling the metaheuristic algorithm (Lines 4-9). The metaheuristic algorithm uses
an update operator to update an individual (Line 6). SPEA uses mutation and crossover [26],
whereas FPA uses global and local pollination operators to update an individual [25]. The
current population generation is updated after evaluations to the next using a selection
operator. FPA and SPEA provide scalar fitness values to each individual and use Pareto
Dominance [4] to update to the next generation. This paper considers two stopping criteria,
the maximum number of generations and the maximum number of generations for which the
population remains the same. After fulfilling the stopping criteria, the algorithm outputs the
final Pareto-optimal solution set. The Algorithm (1) considers all the BBs in the multi-task
system. The number of BBs defines the dimension of the solution space, which influences
the second stopping criterion. Therefore, the smaller the solution space size, the quicker we
might reach the second stopping criteria, leading to fewer individuals to evaluate. Therefore,
we propose two novel approaches to reduce the solution space size in the following sections.

5 Path-based Constraint Approach

During optimization, exploring the whole solution space would be the most reliable way
to find the Pareto-front. But, with limited time to perform optimization, we can consider
objective-specific details to decrease the problem size. The WCET and energy objectives rely

Algorithm 2 Path-based Constraint Approach.

1: Input: Evaluated individual xi,j

2: Output: Constraints for next individual xi+1,j

3: Get Wi,j and Ai,j , and Create Ui,j .
4: for t = 1 : T do ▷ Iterate over all tasks
5: for v = 1 : pt do ▷ Iterate over all basic blocks
6: if BBtv

i,j /∈ Ui,j then
7: xtv

i+1,j = 0
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Algorithm 3 Impact-based Constraint Approach.

1: Input: Evaluated individual xi,j

2: Output: Constraints for next individual xi+1,j

3: Create an empty set : Hi,j and an empty list of BBs : Bi,j

4: for t = 1 : T do ▷ Iterate over all tasks
5: for v = 1 : pt do ▷ Iterate over all basic blocks
6: Hi,j ←− (BBtv

i,j ,Mtv )
7: Sort (Hi,j) in the descending order of Mtv values
8: for q = 1 : d do ▷ Iterate over (Hi,j)
9: if

∑η

b=1 Bb <= α ∗ SSP M then
10: B ←− Hq,1

i,j

11: for t = 1 : T do ▷ Iterate over all tasks
12: for v = 1 : pt do ▷ Iterate over all basic blocks
13: if BBtv

i,j /∈ Bi,j then
14: xtv

i+1,j = 0

on the Worst-Case Execution Path (WCEP) and Average-Case Execution Path (ACEP) of a
program, respectively [1, 23]. WCEP and ACEP are defined as the execution paths through
a task’s control flow graph that leads to their WCET and Average-Case Execution Time
(ACET), respectively. Therefore, instead of exploring the entire search space, we constrain
the solution space at each iteration using WCEP and ACEP information. As the WCEP
and ACEP of a task set could differ, PCA considers the BBs on both paths. Let Wi,j and
Ai,j be the set of BBs on WCEP and ACEP of the jth individual of the ith generation. For
every individual, BBs on WCEP and ACEP can vary. Furthermore, let Ui,j := Wi,j

⋃
Ai,j .

Therefore, MAMO defined by Eq. (1) is extended by adding the following constraint.

xtv
i+1,j = 0, if BBtv

i,j /∈ Ui,j ∀t, v (2)

Algorithm (2) describes the PCA approach proposed in this paper. PCA takes an evaluated
individual xi,j as an input and provides constraints for the individual xi+1,j from the next
generation (Lines 1-2). The sets of BBs, Wi,j , Ai,j , and Ui,j , are created (line 3). If a BB is
not on WCEP or ACEP, then that element of the individual vector for the next generation is
constrained to 0, and the BB is placed in Flash, i.e., xtv

i+1,j = 0 (lines 4-7). This constraint is
enforced by recombination and mutation operators for SPEA and local and global pollination
operators for FPA. Therefore, the size and shape of the solution space can change and be
differently constrained throughout the optimization run.

6 Impact-based Constraint Approach

PCA considered all BBs on the WCEP and ACEP to reduce the dimension of the solution
space, but MAMO has an SPM size constraint, and SPMs are small in size. Consequently,
we can assume that many BBs will not be assigned to SPM for large multi-task systems.
Therefore, we propose the ICA Approach, which guides the optimization using the SPM
size constraint, Worst-Case Execution Count (WCEC), and Average-Case Execution Count
(ACEC) to constrain the solution space. WCEC and ACEC are defined as the number of
times each basic block is executed in a worst- and average-case scenario, respectively. As the
schedulability objective operates at the task level, we do not consider it for solution space
reduction. While initializing ICA, we calculate the impact of each BB on the total WCET
and energy when SPM allocation is not performed. We consider an individual F ∗ where all

WCET 2023
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the BBs are in the Flash and evaluate it by performing WCET and energy analyses. Let
WF ∗ and EF ∗ , and W tv

F ∗ and Etv

F ∗ be the total WCET and total energy, and the WCET and
energy of BBtv

F ∗ , respectively. BBtv

F ∗ is the vth basic block of the tth task of the individual F ∗.
Furthermore, we calculate the impact of each BB by using Wtv

F ∗ := W tv
F ∗

WF ∗
and Etv

F ∗ := Etv
F ∗

EF ∗
.

Let WF ∗ and EF ∗ be the set of Wtv

F ∗ and Etv

F ∗ ∀t, v, respectively for the individual F ∗. After
calculating impact values for each BB for the case where all BBs are in Flash, we call
Algorithm (1) to solve the MAMO problem.

Algorithm (3) describes the proposed ICA approach used to reduce the solution space
size. ICA takes an evaluated individual xi,j as an input and provides constraints for the
individual xi+1,j from the next generation (Lines 1-2). ICA uses the following impact metric
to constrain the solution space.

Mtv = ζWtv
F ∗ ∗ wtv

i,j + βEtv
F ∗ ∗ atv

i,j ,where Wtv
F ∗ ∈ WF ∗ & Etv

F ∗ ∈ EF ∗ (3)

The terms wtv
i,j and atv

i,j represent the WCEC and ACEC of BBtv
i,j of the individual j at

generation i, respectively. Furthermore, ζ, β ∈ [0, 1] and ζ + β = 1 are the positive constant
weights assigned to WCET and energy terms. We can use ζ and β to adjust the weight of the
objectives. During SPM allocation, the BBs on WCEP and ACEP affect the program’s total
WCET and energy. But, BBs having higher WCEC and ACEC values does not indicate
that the BB will have higher WCET and energy values. Therefore, the WCEC and ACEC
term in Eq. (3) is multiplied by the WCET and energy impact terms to calculate the BB’s
impact. The bigger the value of Mtv , the higher the overall impact of BBtv

i,j on the total
WCET and energy of the individual.

An empty set Hi,j of the ordered pairs of BB and impact metric is initialized (line 3),
i.e., (BBtv

i,j , Mtv ) ∈ Hi,j ∀t, v. Furthermore, an empty list Bi,j , which will contain the list
of BBs selected by this heuristic, is initialized (line 3). We iterate through the multi-task
system, i.e., d =

∑T
t=1

∑pt

v=1 v times, to fill the set Hi,j and sort this set in the descending
order of Mtv values (lines 4-7). For selecting the BBs, we iterate through Hi,j and add BBs
to Bi,j until the total size of the BBs selected, i.e.,

∑η
b=1 Bb, is not greater than α ∗ SSP M ,

where α is a positive constant, and SSP M is the SPM size (Lines 8-10). Furthermore, Bb is
the size of the bth BB in Bi,j and η ∈ N such that 1 ≤ η ≤ d represents the total number of
BBs which are not constrained for the (i + 1)th generation. Using this heuristic, we select
the BBs that have the highest impact on the WCET and energy of the code. We further
constrain the solution space by limiting the number of the BBs selected by α ∗ SSP M . If a
BB is not in Bi,j , then that element of the individual for the next generation is constrained
to 0, i.e., xtv

i+1,j = 0 (Lines 11-14). This constraint is enforced by SPEA’s recombination
and mutation operators and FPA’s local and global pollination operators to update the
individual to (i + 1)th generation. Therefore, if the BB is not in Bi,j , i.e., BBtv

i,j /∈ Bi,j , then
xtv

i+1,j BB of individual j will be placed in Flash during the (i + 1)th generation. Using this
heuristic, we drastically constrain the solution space of big multi-task problems and perform
MAMO within a limited timeframe. As ICA considers WCEC and ACEC information, it
relies indirectly on the properties considered in PCA. But, unlike PCA, the ICA does not
ignore the BBs not on WCEP and ACEP, but they have a low priority.

7 Evaluation

In this section, the evaluations compare the MAMO approach with PCA and ICA. The
evaluations include compilation times, Pareto fronts, and quality indicators comparison for
task sets consisting of 2, 4, 6, and 8 tasks. For each, 10 task sets are randomly generated
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Figure 1 Compilation times required to perform MAMO, PCA, and ICA.

and are un-schedulable by construction. Multiple single-task benchmarks from the MRTC
suite [9], with loop bound annotations from the TACLeBench [5], were combined into a
multi-tasking task set. Optimization flag -O2, which enables several ACET-oriented compiler
optimizations, was used, and SPM size was set to 60% of the code size of each task set to
increase the pressure on MAMO. A timeout value of 200 h is set for the optimization. If the
optimization does not finish within this time limit, the final Pareto front is generated from
the last generation, and the final results are output. The SPM allocation code generated by
WCC is for ARM7TDMI architecture. For the sake of brevity, the figures show results for four
randomly chosen task sets1. WCC uses an external WCET analyzer called aiT [1] for WCET
analysis and an internal schedulability analyzer [16] for schedulability analysis. Furthermore,
WCC uses a cycle-true instruction set simulator from Synopsys called Virtualizer [11] to get
ACEC and ACET data. The energy analyzer within WCC uses the energy model proposed
by Roth et al. [20] and average-case data to perform the analysis [23].

For the FPA-based optimization, the switch probability between the local and global
pollination is ps = 0.8. According to [25, 19], for FPA, the positive integer λ = 1.5 for
the standard gamma function, and the scaling factor γ = 0.1 works well. For SPEA-based
optimization, the external population set size is 10. The crossover probability is 0.8, and
the mutation probability is 0.2. The population size is 10, the first stopping criterion –the
maximum number of generations– is 80, and the second stopping criterion –the maximum
number of generations for which the population remains the same– is 10. PCA does not
need any extra parameter settings. But, for ICA, we set the weights for M as ζ = 0.5 and
β = 0.5 so that the WCET and energy objectives are equally weighted while selecting the
BBs. Furthermore, α = 0.9, i.e., we allow the BBs 0.9 times the SPM size during selection.
α is less than 1 to accommodate the extra code inserted during jump correction. The results
from these evaluations are valid for the algorithm parameters described above.

7.1 Compilation Times
Fig. (1) compares the compilation times for MAMO, PCA, and ICA on four task sets. The x-
and y-axis represent task sets and compilation times, respectively. Each task set has six bars
– the first three are the results for FPA, and the last three for SPEA, respectively, for MAMO,
PCA, and ICA. The figure shows that MAMO took more time to output the final Pareto
front than PCA and ICA. Overall evaluations show that PCA and ICA achieved 85.31% and
77.31% overall reduction in compilation times, respectively, compared to MAMO. Moreover,
PCA–FPA achieved the most reduction in compilation time. The timeout value is hit by

1 All the remaining figures can be made available at the readers’ request.
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17, 6, and 7 task sets in the case of MAMO, PCA, and ICA, respectively. MAMO–FPA,
on average, required 184.41% higher compilation time than MAMO–SPEA. PCA–FPA and
ICA–FPA required 26.8% and 46.99% less compilation times than PCA–SPEA and ICA–
SPEA, respectively. The improved performance of FPA over SPEA in PCA and ICA may be
due to constraints on the search space, which make FPA update strategies for PCA and ICA
more effective in converging to the Pareto-optimal front.

The overall decrease in compilation times achieved using PCA and ICA is due to the
search space reduction and the second stopping criterion. The total number of BBs in
the task set determines the search space size. To calculate the reduction in the search
space for PCA, we first calculated the total number of BBs not constrained by Eq. (2). As
the number of BBs on WCEP and ACEP may vary, we calculated the average number of
BBs on WCEP and ACEP over all populations. Similarly, for ICA, the number of BBs
not constrained according to the Algorithm (3) are calculated and averaged over all the
populations. PCA and ICA, on average, achieved 60.06% and 87.638% reduction in the
search space, respectively. The reduction in the search space can cause the optimization
to hit the second stopping criteria faster. But, the average reduction in the search space
cannot directly reflect the decrease in compilation times. If the metaheuristics find better
solutions in every generation, the second stopping criteria is not fulfilled. E.g., even though
ICA achieved a higher reduction in the search space size, PCA–SPEA achieved the most
reduction in compilation time on average.

7.2 Pareto Fronts
Obtaining a true Pareto front to MAMO problem described in Sec. (3) is ambitious. Under
a realistic assumption that the true Pareto front is unknown, we define a new set P that
represents its approximation. Let A and B be two Pareto fronts returned by FPA and SPEA,
respectively. The new set P is defined as the set of all non-dominated points of the union
of the sets A and B, i.e., P = {pi|∀pi∄cj ∈ (A ∪ B) ≺ pi}. For each task set, we obtain the
final Pareto front (P) from the union of all the Pareto optimal solutions obtained from all
the approaches. Fig. (2) shows the solutions for four task sets found by MAMO, PCA, ICA,
and the standard -O2 optimization level in the form of Pareto fronts. We represent WCET,
energy, and schedulability values on the x−, y−, and z−axis, respectively. In the legend of
the sub-figure, we show the number of solutions returned by each approach. Furthermore,
we show the number of solutions on P out of the total solutions. To distinguish the solutions
on P, they are highlighted using numbers.

For the task set 2TasksMRTC_1, we see that all solutions by MAMO and ICA are on
P. One MAMO–FPA solution (Solution 2) is scheduled, whereas the other is schedulable if
one task is removed from the task set. Similarly, one MAMO–SPEA solution out of three
(Solution 5) has a schedulable task set. ICA–FPA and ICA–SPEA found one completely
scheduled solution each (Solution 6 and 7) on P, converging on the same solution. None of
the solutions obtained by PCA are on P. Considering the compilation times by ICA and
MAMO, we can conclude that ICA performed better for this task set. Besides, when we
compare the solutions on P with the -O2 solution, we see on average 34.02%, 78.69%, and
91.781% decrease in WCET, energy consumption, and schedulability objectives, respectively.
The 91.781% average decrease in the schedulability objective indicates that P consists of
partially scheduled solutions too.

For task set 4TasksMRTC_3, ICA–FPA clearly outperforms others. Both ICA–FPA’s
solutions on P are completely schedulable. For the task set 6TasksMRTC_5, PCA–FPA
and ICA–FPA found three and two solutions on P, respectively. ICA–FPA solutions are
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Figure 2 Solutions Obtained by MAMO, PCA, ICA, and -O2 runs for multi-task system.

completely schedulable, and PCA–FPA solutions are schedulable if one task is removed from
the task set. But, PCA–FPA found these solutions faster than ICA–FPA (cf. Fig. (1)). For
task set 8TasksMRTC_6, ICA–FPA was able to find better solutions overall. We can see
that the time taken by PCA–FPA is lower than ICA–FPA (cf. Fig. (1)). But, the quality
of the solutions obtained by ICA is much better than PCA. Consequently, we can say that
ICA–FPA performs better for this task set. Furthermore, when we compare the solutions on
P with the -O2 solution, we see on average 68.23%, 97.09%, and 100% decrease in WCET,
energy consumption, and schedulability objectives, respectively. The 100% decrease in the
schedulability objective indicates that all the solutions on P are completely schedulable.

From overall evaluations, for all the task sets, out of all solutions found by MAMO for
FPA and SPEA, on average, 10.24% and 13.39% of solutions were on P. PCA for FPA and
SPEA had, on average, 11.27% and 5.93% of solutions on P . Finally, ICA for FPA and SPEA
algorithms had 88.89% and 4.81% of solutions on P, respectively, on average. Therefore, we
can say that ICA–FPA provided most solutions on P.

7.3 Quality Metrics
We use the following quality metrics to evaluate and compare the quality of multi-objective
optimization approaches. Coverage (CA) [26] is a quality metric that describes the total
number of dominated points in a set A. The lower the value of CA, the better. The Non-
Dominance Ratio (NDRA) [8] is another quality metric measuring the ratio of non-dominated
solutions contributed by a particular solution set A to the non-dominated solutions provided
by all solution sets. The higher the value of the non-dominance ratio, the better. The
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Non-Dominated Solutions (NDSA) [3] is the last considered quality metric that calculates
the number of non-dominated solutions concerning the set A itself, when compared to P.
The higher the value of non-dominated solutions, the better.

Table 1 Comparing FPA & SPEA.

Number of Task Sets
Quality MAMO PCA ICA
metric FPA SPEA FPA SPEA FPA SPEA

CA 21 19 23 17 37(3) 0(3)

NDRA 19(2) 19(2) 20(3) 17(3) 40 0

NDSA 21 19 23 17 37(3) 0(3)

Table 2 Comparing MAMO, PCA, & ICA.

Number of Task Sets
Quality FPA SPEA
metric MAMO PCA ICA MAMO PCA ICA

CA 3(4) 2(4) 27(3) 3(3) 1(3) 0(3)

NDRA 3(4) 2(4) 27(3) 3(3) 1(3) 0(3)

NDSA 3(4) 2(4) 27(3) 3(3) 1(3) 0(3)

We compared quality metrics to evaluate the quality of the obtained solutions. We first
compared solutions obtained using FPA and SPEA algorithms for each approach. For this
comparison, P is generated individually for MAMO, PCA, and ICA by combining the final
Pareto fronts of their respective FPA and SPEA runs. Table (1) provides the total number of
task sets for which FPA and SPEA performed better for each approach. During evaluations,
we encountered task sets for which the quality metrics were indifferent to each other. The
total number of such indifferent task sets is indicated using brackets within the table. From
an overall comparison, we can say that SPEA and FPA algorithms provided relatively the
same quality of solutions for MAMO and PCA, and FPA performed outright better for ICA.

Furthermore, we compared MAMO, PCA, and ICA approaches in terms of the above-
mentioned quality metrics. For this comparison, P is generated by combining the final Pareto
fronts of all the approaches. Table (2) provides the total number of task sets for which
MAMO, PCA, and ICA performed better. The total number of task sets with indifferent
quality metrics are indicated within the table using brackets. From an overall comparison, we
can clearly see that ICA–FPA provided better quality solutions for most task sets. Although
it is difficult to know beforehand which approach will deliver the better Pareto-optimal
solutions due to the non-deterministic nature of algorithms, we could find better results by
constraining the solution space and focusing the optimization direction on the BBs that
highly impact the objectives.

8 Conclusions

In this paper, we formulated a 3-dimensional SPM allocation-based MAMO and solved it
using FPA and SPEA algorithms. As the compilation times required for the optimization
can increase with the problem size, we introduced two new approaches, PCA and ICA, to
cope with the MAMO problem size. All these approaches were able to find the trade-offs
between schedulability, WCET, and energy consumption. Moreover, we compared the results
obtained using FPA and SPEA for all three approaches. From evaluations, we, on average,
achieved 85.31% and 77.31% reduction in compilation times using PCA and ICA compared
to MAMO, respectively. Moreover, ICA–FPA found good quality solutions for 27 task sets
and, on average, found 88.89% of the solutions on P , which is the highest compared to other
considered optimization approaches. Therefore, in this paper, we were able to show that
clever integration of worst-case and average-case information within the optimization can
lead to a drastic reduction in compilation times and help find better-quality solutions.

The two approaches discussed in this paper to reduce the solution space effectively
reduced the runtime of the optimization and provided quality solutions. But, there were
still some larger task sets that ran into timeouts during our evaluations. In the future, a
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promising approach to further reduce the compilation times could be to partially replace
time-consuming WCET and energy analyses with pessimistic WCET and energy estimations.
In this paper, the approximated Pareto-optimal solution set returned by the optimization
could consist of either fully or partially schedulable solutions. But a multi-task system could
consist of tasks with both hard and soft timing constraints. Therefore, in the future, we
could extend the proposed multi-objective formulation in which the system designer specifies
tasks with hard and soft timing constraints. Based on these specifications, the compiler
could either treat a task as part of the schedulability constraint or part of the schedulability
objective, which could further constrain the solution space and provide the system designer
more control over the optimization parameters and the compiler output. Furthermore, SPM
allocation is just one optimization that we have considered as a multi-task multi-objective
problem. Other compiler-based optimizations also have great potential, which might need
objective-independent ways to constrain the solutions space. Therefore, in the future, we
can consider hybrid algorithms, which combine relaxed ILPs and metaheuristic algorithms
together to constrain the solution space in a problem-independent manner.
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