59 research outputs found

    Dust altitude and infrared optical depth from AIRS

    Get PDF
    International audienceWe show that mineral dust optical depth and altitude can be retrieved from the Aqua – Advanced Infrared Radiation Sounder (AIRS) measurements. Sensitivity studies performed with a high spectral resolution radiative transfer code show that dust effect on brightness temperatures may reach about 10 Kelvins for some channels. Using a Look-Up-Table approach, we retrieve not only the 10 ”m optical depth but also the altitude of Saharan dust layer, above the Atlantic Ocean, from April to September 2003. A key point of our method relies in its ability to retrieve dust altitude from satellite observations. The time and space distribution of the optical depth is in good agreement with the Moderate resolution Imaging Spectroradiometer (MODIS) products. Comparing MODIS and AIRS aerosol optical depths, we find that the ratio between infrared and visible optical depths decreases during transport from 0.35 to 0.22, revealing a loss in coarse particles caused by gravitational settling. The evolution of dust altitude from spring to summer is in agreement with the transport seasonality

    The 2015 edition of the GEISA spectroscopic database

    Get PDF
    The GEISA database (Gestion et Etude des Informations Spectroscopiques Atmospheriques: Management and Study of Atmospheric Spectroscopic Information) has been developed and maintained by the ARA/ABC(t) group at LMD since 1974. GEISA is constantly evolving, taking into account the best available spectroscopic data. This paper presents the 2015 release of GEISA (GEISA-2015), which updates the last edition of 2011 and celebrates the 40th anniversary of the database. Significant updates and additions have been implemented in the three following independent databases of GEISA. The line parameters database contains 52 molecular species (118 isotopologues) and transitions in the spectral range from 10(-6) to 35,877.031 cm(-1), representing 5,067,351 entries, against 3,794,297 in GEISA-2011. Among the previously existing molecules, 20 molecular species have been updated. A new molecule (SO3) has been added. HDO, isotopologue of H2O, is now identified as an independent molecular species. Seven new isotopologues have been added to the GEISA-2015 database. The cross section sub-database has been enriched by the addition of 43 new molecular species in its infrared part, 4 molecules (ethane, propane, acetone, acetonitrile) are also updated; they represent 3% of the update. A new section is added, in the near-infrared spectral region, involving 7 molecular species: CH3CN, CH3I, CH3O2, H2CO, HO2, HONO, NH3. The microphysical and optical properties of atmospheric aerosols sub-database has been updated for the first time since 2003. It contains more than 40 species originating from NCAR and 20 from the ARIA archive of Oxford University. As for the previous versions, this new release of GEISA and associated management software facilities are implemented and freely accessible on the AERIS/ESPRI atmospheric chemistry data center website. (C) 2016 Elsevier Inc. All rights reserved

    Water in Comet 2/2003 K4 (LINEAR) with Spitzer

    Full text link
    We present sensitive 5.5 to 7.6 micron spectra of comet C/2003 K4 (LINEAR) obtained on 16 July 2004 (r_{h} = 1.760 AU, Delta_{Spitzer} = 1.409 AU, phase angle 35.4 degrees) with the Spitzer Space Telescope. The nu_{2} vibrational band of water is detected with a high signal-to-noise ratio (> 50). Model fitting to the best spectrum yields a water ortho-to-para ratio of 2.47 +/- 0.27, which corresponds to a spin temperature of 28.5^{+6.5}_{-3.5} K. Spectra acquired at different offset positions show that the rotational temperature decreases with increasing distance from the nucleus, which is consistent with evolution from thermal to fluorescence equilibrium. The inferred water production rate is (2.43 +/- 0.25) \times 10^{29} molec. s^{-1}. The spectra do not show any evidence for emission from PAHs and carbonate minerals, in contrast to results reported for comets 9P/Tempel 1 and C/1995 O1 (Hale-Bopp). However, residual emission is observed near 7.3 micron the origin of which remains unidentified.Comment: 33 pages, including 11 figures, 2 tables, ApJ 2007 accepte

    DAOSPEC: an automatic code for measuring equivalent widths in high-resolution stellar spectra

    Full text link
    DAOSPEC is a Fortran code for measuring equivalent widths of absorption lines in stellar spectra with minimal human involvement. It works with standard FITS format files and it is designed for use with high resolution (R>15000) and high signal-to-noise-ratio (S/N>30) spectra that have been binned on a linear wavelength scale. First, we review the analysis procedures that are usually employed in the literature. Next, we discuss the principles underlying DAOSPEC and point out similarities and differences with respect to conventional measurement techniques. Then experiments with artificial and real spectra are discussed to illustrate the capabilities and limitations of DAOSPEC, with special attention given to the issues of continuum placement; radial velocities; and the effects of strong lines and line crowding. Finally, quantitative comparisons with other codes and with results from the literature are also presented.Comment: You can find the DAOSPEC manual at http://www.bo.astro.it/~pancino/docs/daospec.pd

    Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres

    Get PDF
    We present a comprehensive description of the theory and practice of opacity calculations from the infrared to the ultraviolet needed to generate models of the atmospheres of brown dwarfs and extrasolar giant planets. Methods for using existing line lists and spectroscopic databases in disparate formats are presented and plots of the resulting absorptive opacities versus wavelength for the most important molecules and atoms at representative temperature/pressure points are provided. Electronic, ro-vibrational, bound-free, bound-bound, free-free, and collision-induced transitions and monochromatic opacities are derived, discussed, and analyzed. The species addressed include the alkali metals, iron, heavy metal oxides, metal hydrides, H2H_2, H2OH_2O, CH4CH_4, COCO, NH3NH_3, H2SH_2S, PH3PH_3, and representative grains. [Abridged]Comment: 28 pages of text, plus 22 figures, accepted to the Astrophysical Journal Supplement Series, replaced with more compact emulateapj versio

    The 2009 edition of the GEISA spectroscopic database

    Get PDF
    The updated 2009 edition of the spectroscopic database GEISA (Gestionet Etudedes Informations Spectroscopiques Atmospheriques ; Management and Study of Atmospheric Spectroscopic Information) is described in this paper. GEISA is a computer-accessible system comprising three independent sub-databases devoted, respectively, to: line parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols. In this edition, 50 molecules are involved in the line parameters sub-database, including 111 isotopologues, for a total of 3,807,997 entries, in the spectral range from 10-6 to 35,877.031cm-1. GEISA, continuously developed and maintained at LMD (Laboratoirede Meteorologie Dynamique, France) since 1976, is implemented on the IPSL/CNRS(France) ‘‘Ether’’ Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived spectroscopic data can be handled through general and user friendly associated managements of software facilities. More than 350 researchers are registered for online use of GEISA

    The 2015 edition of the GEISA spectroscopic database

    Get PDF
    The GEISA database (Gestion et Etude des Informations Spectroscopiques AtmosphĂ©riques: Management and Study of Atmospheric Spectroscopic Information) has been developed and maintained by the ARA/ABC(t) group at LMD since 1974. GEISA is constantly evolving, taking into account the best available spectroscopic data. This paper presents the 2015 release of GEISA (GEISA-2015), which updates the last edition of 2011 and celebrates the 40th anniversary of the database. Significant updates and additions have been implemented in the three following independent databases of GEISA. The “line parameters database” contains 52 molecular species (118 isotopologues) and transitions in the spectral range from 10−6 to 35,877.031 cm−1, representing 5,067,351 entries, against 3,794,297 in GEISA-2011. Among the previously existing molecules, 20 molecular species have been updated. A new molecule (SO3) has been added. HDO, isotopologue of H2O, is now identified as an independent molecular species. Seven new isotopologues have been added to the GEISA-2015 database. The “cross section sub-database” has been enriched by the addition of 43 new molecular species in its infrared part, 4 molecules (ethane, propane, acetone, acetonitrile) are also updated; they represent 3% of the update. A new section is added, in the near-infrared spectral region, involving 7 molecular species: CH3CN, CH3I, CH3O2, H2CO, HO2, HONO, NH3. The “microphysical and optical properties of atmospheric aerosols sub-database” has been updated for the first time since 2003. It contains more than 40 species originating from NCAR and 20 from the ARIA archive of Oxford University. As for the previous versions, this new release of GEISA and associated management software facilities are implemented and freely accessible on the AERIS/ESPRI atmospheric chemistry data center website

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re

    Dust altitude and infrared optical depth from AIRS

    No full text
    We show that mineral dust optical depth and altitude can be retrieved from the Aqua - Advanced Infrared Radiation Sounder (AIRS) measurements. Sensitivity studies performed with a high spectral resolution radiative transfer code show that dust effect on brightness temperatures may reach about 10 Kelvins for some channels. Using a Look-Up-Table approach, we retrieve not only the 10 µm optical depth but also the altitude of Saharan dust layer, above the Atlantic Ocean, from April to September 2003. A key point of our method is its ability to retrieve dust altitude from satellite observations. The time and space distribution of the optical depth is in good agreement with the Moderate resolution Imaging Spectroradiometer (MODIS) products. Comparing MODIS and AIRS aerosol optical depths, we find that the ratio between infrared and visible optical depths decreases during transport from 0.35 to 0.22, revealing a loss in coarse particles caused by gravitational settling. The evolution of dust altitude from spring to summer is in agreement with current knowledge on transport seasonality
    • 

    corecore