62 research outputs found

    Predicting Optimal Lengths of Random Knots

    Get PDF
    In thermally fluctuating long linear polymeric chain in solution, the ends come from time to time into a direct contact or a close vicinity of each other. At such an instance, the chain can be regarded as a closed one and thus will form a knot or rather a virtual knot. Several earlier studies of random knotting demonstrated that simpler knots show their highest occurrence for shorter random walks than more complex knots. However up to now there were no rules that could be used to predict the optimal length of a random walk, i.e. the length for which a given knot reaches its highest occurrence. Using numerical simulations, we show here that a power law accurately describes the relation between the optimal lengths of random walks leading to the formation of different knots and the previously characterized lengths of ideal knots of the corresponding type

    The reaction centre of the photounit of Rhodospirillum rubrum is anchored to the light-harvesting complex with four-fold rotational disorder

    Get PDF
    The minimal photounit of the photosynthetic membranes of the purple non-sulphur bacterium Rhodospirillum rubrum, comprising the reaction centre and the light-harvesting complex has been purified and crystallised in two dimensions in the presence of added phospholipids, and subsequently visualised by electron microscopy after negatively-staining. The position of the reaction centres within the light-harvesting ring has been determined at low resolution by the application of a new analysis for rotationally disordered identical units (here the reaction centres) within a two-dimensional crystalline lattice comprised of perfectly aligned unit cells (here the light-harvesting complexes). The reaction centre was found to preferentially occupy one of four orientations within the light-harvesting complex. The light-harvesting complex appears to be distorted to C4 symmetry, thus assuming a squarish shape when visualised by negative staining. A tentative structural model of the reaction centre-light-harvesting complex photounit which fits the experimental data is propose

    Citizen biologists

    Full text link

    Bending modes of DNA directly addressed by cryo-electron microscopy of DNA minicircles

    Get PDF
    We use cryo-electron microscopy (cryo-EM) to study the 3D shapes of 94-bp-long DNA minicircles and address the question of whether cyclization of such short DNA molecules necessitates the formation of sharp, localized kinks in DNA or whether the necessary bending can be redistributed and accomplished within the limits of the elastic, standard model of DNA flexibility. By comparing the shapes of covalently closed, nicked and gapped DNA minicircles, we conclude that 94-bp-long covalently closed and nicked DNA minicircles do not show sharp kinks while gapped DNA molecules, containing very flexible single-stranded regions, do show sharp kinks. We corroborate the results of cryo-EM studies by using Bal31 nuclease to probe for the existence of kinks in 94-bp-long minicircle

    Cryo-electron microscopy of viruses

    Get PDF
    Thin vitrified layers of unfixed, unstained and unsupported virus suspensions can be prepared for observation by cryo-electron microscopy in easily controlled conditions. The viral particles appear free from the kind of damage caused by dehydration, freezing or adsorption to a support that is encountered in preparing biological samples for conventional electron microscopy. Cryo-electron microscopy of vitrified specimens offers possibilities for high resolution observations that compare favourably with any other electron microscopical method

    Bending modes of DNA directly addressed by cryo-electron microscopy of DNA minicircles

    Get PDF
    We use cryo-electron microscopy (cryo-EM) to study the 3D shapes of 94-bp-long DNA minicircles and address the question of whether cyclization of such short DNA molecules necessitates the formation of sharp, localized kinks in DNA or whether the necessary bending can be redistributed and accomplished within the limits of the elastic, standard model of DNA flexibility. By comparing the shapes of covalently closed, nicked and gapped DNA minicircles, we conclude that 94-bp-long covalently closed and nicked DNA minicircles do not show sharp kinks while gapped DNA molecules, containing very flexible single-stranded regions, do show sharp kinks. We corroborate the results of cryo-EM studies by using Bal31 nuclease to probe for the existence of kinks in 94-bp-long minicircles

    3D reconstruction and comparison of shapes of DNA minicircles observed by cryo-electron microscopy

    Get PDF
    We use cryo-electron microscopy to compare 3D shapes of 158 bp long DNA minicircles that differ only in the sequence within an 18 bp block containing either a TATA box or a catabolite activator protein binding site. We present a sorting algorithm that correlates the reconstructed shapes and groups them into distinct categories. We conclude that the presence of the TATA box sequence, which is believed to be easily bent, does not significantly affect the observed shapes

    Luminal particles within cellular microtubules.

    Get PDF
    The regulation of microtubule dynamics is attributed to microtubule-associated proteins that bind to the microtubule outer surface, but little is known about cellular components that may associate with the internal side of microtubules. We used cryoelectron tomography to investigate in a quantitative manner the three dimensional structure of microtubules in intact mammalian cells. We show that the lumen of microtubules in this native state is filled with discrete, globular particles with a diameter of 7 nm and spacings between 8 and 20 nm in neuronal cells. Cross-sectional views of microtubules confirm the presence of luminal material in vitreous sections of brain tissue. Most of the luminal particles had connections to the microtubule wall, as revealed in tomograms. A higher accumulation of particles was seen near the retracting plus ends of microtubules. The luminal particles were abundant in neurons, but were also observed in other cells, such as astrocytes and stem cells
    corecore