216 research outputs found

    Vanishing artifficial diffusion as a mechanism to accelerate convergence for multiphase porous media flow

    Get PDF
    Numerical solution of the equations governing multiphase porous media flow is challenging. A common approach to improve the performance of iterative non-linear solvers for these problems is to introduce artificial diffusion. Here, we present a mass conservative artificial diffusion that accelerates the non-linear solver but vanishes when the solution is converged. The vanishing artificial diffusion term is saturation dependent and is larger in regions of the solution domain where there are steep saturation gradients. The non-linear solver converges more slowly in these regions because of the highly non-linear nature of the solution. The new method provides accurate results while significantly reducing the number of iterations required by the non-linear solver. It is particularly valuable in reducing the computational cost of highly challenging numerical simulations, such as those where physical capillary pressure effects are dominant. Moreover, the method allows converged solutions to be obtained for Courant numbers that are at least two orders of magnitude larger than would otherwise be possible

    Rift-related magmatism influences petroleum system development in the NE Irish Rockall Basin, offshore Ireland

    Get PDF
    Large volumes of hydrocarbons reside in volcanically influenced sedimentary basins. Despite having a good conceptual understanding of how magmatism impacts the petroleum systems of such basins, we still lack detailed case studies documenting precisely how intrusive magmatism influences, for example, trap development and reservoir quality. Here we combine 3D seismic reflection, borehole, petrographical and palaeothermometric data to document the geology of borehole 5/22-1, NE Irish Rockall Basin, offshore western Ireland. This borehole (Errigal) tested a four-way dip closure that formed to accommodate emplacement of a Paleoceneā€“Eocene igneous sill-complex during continental break-up in the North Atlantic. Two water-bearing turbidite-sandstone-bearing intervals occur in the Upper Paleocene; the lowermost contains thin (c. 5ā€…m), quartzose-feldspathic sandstones of good reservoir quality, whereas the upper is dominated by poor-quality volcaniclastic sandstones. Palaeothermometric data provide evidence of anomalously high temperatures in the Paleoceneā€“Eocene succession, suggesting the poor reservoir quality within the target interval is likely to reflect sill-induced heating, fluid flow, and related diagenesis. The poor reservoir quality is also probably the result of the primary composition of the reservoir, which is dominated by volcanic grains and related clays derived from an igneous-rock-dominated, sediment source area. Errigal appeared to fail due to a lack of hydrocarbon charge: that is, the low bulk permeability of the heavily intruded Cretaceous mudstone succession may have impeded the vertical migration of sub-Cretaceous-sourced hydrocarbons into supra-Cretaceous reservoirs. Break-up-related magmatism did, however, drive the formation of a large structural closure, with data from Errigal at least proving high-quality, Upper Paleocene deep-water reservoirs. Future exploration targets in the NE Irish Rockall Basin include: (i) stratigraphically trapped Paleoceneā€“Eocene deep-water sandstones that onlap the flanks of intrusion-induced forced folds; (ii) structurally trapped, intra-Cretaceous, deep-water sandstones incorporated within intrusion-induced forced folds; and (iii) more conventional, Mesozoic fault-block traps underlying the heavily intruded Cretaceous succession (e.g. Dooish). Similar plays may exist on other continental margins influenced by break-up magmatism

    Is cell-to-cell scale variability necessary in reservoir models?

    Get PDF
    Reservoir models typically contain hundreds-of-thousands to millions of grid cells in which petrophysical properties such as porosity and permeability vary on a cell-to-cell basis. However, although the petrophysical properties of rocks do vary on a point-to-point basis, this variability is not equivalent to the cell-to-cell variations in models. We investigate the impact of removing cell-to-cell variability on predictions of fluid flow in reservoir models. We remove cell-to-cell variability from models containing hundreds of thousands of unique porosity and permeability values to yield models containing just a few tens of unique porosity and permeability values grouped into a few internally homogeneous domains. The flow behavior of the original model is used as a reference. We find that the impact of cell-to-cell variability on predicted flow is small. Cell-to-cell variability is not necessary to capture flow in reservoir models; rather, it is the spatially correlated variability in petrophysical properties that is important. Reservoir modelling effort should focus on capturing correlated geologic domains in the most realistic and computationally efficient manner

    Identification and application of bacterial volatiles to attract a generalist aphid parasitoid from laboratory to greenhouse assays

    Get PDF
    BACKGROUND: Recent studies have shown that microorganisms emit volatile compounds that affect insect behaviour. However, it remains largely unclear whether microbes can be exploited as a source of attractants to improve biological control of insect pests. In this study, we used a combination of coupled gas chromatography electroantennography (GC-EAG) and Y-tube olfactometer bioassays to identify attractive compounds in the volatile extracts of three bacterial strains that are associated with the habitat of the generalist aphid parasitoid Aphidius colemani, and to create mixtures of synthetic compounds to find attractive blends for A. colemani. Subsequently, the most promising blend was evaluated in two-choice cage experiments under greenhouse conditions. RESULTS: GC-EAG analysis revealed 20 compounds that were linked to behaviourally attractive bacterial strains. A mixture of two EAG-active compounds, styrene and benzaldehyde applied at a respective dose of 1 Ī¼g and 10 ng, was more attractive than the single compounds or the culture medium of the bacteria in Y-tube olfactometer bioassays. Application of this synthetic mixture under greenhouse conditions resulted in significant attraction of the parasitoids, and outperformed application of the bacterial culture medium. CONCLUSION: Compounds isolated from bacterial blends were capable of attracting parasitoids both in laboratory and greenhouse assays, indicating that microbial culture are an effective source of insect attractants. This opens new opportunities to attract and retain natural enemies of pest species and to enhance biological pest control

    Echocardiographic Parameters for Risk Prediction in Borderline Right Ventricle: Review with Special Emphasis on Pulmonary Atresia with Intact Ventricular Septum and Critical Pulmonary Stenosis

    Get PDF
    The aim of the present review is to highlight the strengths and limitations of echocardiographic parameters and scores employed to predict favorable outcome in complex congenital heart diseases (CHDs) with borderline right ventricle (RV), with a focus on pulmonary atresia with intact ventricular septum and critical pulmonary stenosis (PAIVS/CPS). A systematic search in the National Library of Medicine using Medical Subject Headings and free-text terms including echocardiography, CHD, and scores, was performed. The search was refined by adding keywords ā€œPAIVS/CPSā€, Ebsteinā€™s anomaly, and unbalanced atrioventricular septal defect with left dominance. A total of 22 studies were selected for final analysis; 12 of them were focused on parameters to predict biventricular repair (BVR)/pulmonary blood flow augmentation in PAIVS/CPS. All of these studies presented numerical (the limited sample size) and methodological limitations (retrospective design, poor definition of inclusion/exclusion criteria, variability in the definition of outcomes, differences in adopted surgical and interventional strategies). There was heterogeneity in the echocardiographic parameters employed and cut-off values proposed, with difficultly in establishing which one should be recommended. Easy scores such as TV/MV (tricuspid/mitral valve) and RV/LV (right/left ventricle) ratios were proven to have a good prognostic accuracy; however, the data were very limited (only two studies with <40 subjects). In larger studies, RV end-diastolic area and a higher degree of tricuspid regurgitation were also proven as accurate predictors of successful BVR. These measures, however, may be either operator and/or load/pressure dependent. TV Z-scores have been proposed by several authors, but old and heterogenous nomograms sources have been employed, thus producing discordant results. In summary, we provide a review of the currently available echocardiographic parameters for risk prediction in CHDs with a diminutive RV that may serve as a guide for use in clinical practice

    Impact of endophytic colonization by entomopathogenic fungi on the behavior and life history of the tobacco peach aphid Myzus persicae var. nicotianae

    Get PDF
    Entomopathogenic fungi can adopt an endophytic lifestyle and provide protection against insect herbivores and plant pathogens. So far, most studies have focused on Beauveria bassiana to increase plant resistance against abiotic and biotic stresses, while only little is known for other entomopathogenic fungi. In this study, we investigated whether root inoculation of sweet pepper (Capsicum annuum L.) by the entomopathogenic fungi Akanthomyces muscarius ARSEF 5128 and B. bassiana ARSEF 3097 can improve resistance against the tobacco peach aphid Myzus persicae var. nicotianae. First, dual-choice experiments were performed to test the hypothesis that the fungi deter aphids via modifying plant volatile profiles. Next, we tested the hypothesis that endophytic colonization negatively affects aphid life history traits, such as fecundity, development and mortality rate. Aphids were significantly attracted to the odor of plants inoculated with A. muscarius over non-inoculated plants. Plants inoculated with A. muscarius emitted significantly higher amounts of Ī²-pinene than non-inoculated plants, and significantly higher amounts of indole than B. bassiana-inoculated and non-inoculated plants. Inoculation with the fungal strains also caused significantly higher emission of terpinolene. Further, both aphid longevity and fecundity were significantly reduced by 18% and 10%, respectively, when feeding on plants inoculated with A. muscarius, although intrinsic rate of population increase did not differ between inoculated and non-inoculated plants. Sweet pepper plants inoculated with B. bassiana ARSEF 3097 did not elicit a significant behavioral response nor affected the investigated life history traits. We conclude that endophytic colonization by entomopathogenic fungi has the potential to alter olfactory behavior and performance of M. persicae var. nicotianae, but effects are small and depend on the fungal strain used

    Bacterial phylogeny predicts volatile organic compound composition and olfactory response of an aphid parasitoid

    Get PDF
    There is increasing evidence that microorganisms emit a wide range of volatile compounds (mVOCs, microbial volatile organic compounds) that act as insect semiochemicals, and therefore play an important role in insect behaviour. Although it is generally believed that phylogenetically closely related microbes tend to have similar phenotypic characteristics and therefore may elicit similar responses in insects, currently little is known about whether the evolutionary history and phylogenetic relationships among microorganisms have an impact on insectā€microbe interactions. In this study, we tested the hypothesis that phylogenetic relationships among 40 Bacillus strains isolated from diverse environmental sources predicted mVOC composition and the olfactory response of the generalist aphid parasitoid Aphidius colemani . Results revealed that phylogenetically closely related Bacillus strains emitted similar blends of mVOCs and elicited a comparable olfactory response of A. colemani in Yā€tube olfactometer bioassays, varying between attraction and repellence. Analysis of the chemical composition of the mVOC blends showed that all Bacillus strains produced a highly similar set of volatiles, but often in different concentrations and ratios. Benzaldehyde was produced in relatively high concentrations by strains that repel A. colemani , while attractive mVOC blends contained relatively higher amounts of acetoin, 2,3ā€butanediol, 2,3ā€butanedione, eucalyptol and isoamylamine. Overall, these results indicate that bacterial phylogeny had a strong impact on mVOC compositions and as a result on the olfactory responses of insects

    Correlation between maternal and neonatal blood Vitamin D level; A cross sectional study of 416 participants visiting a tertiary care hospital in Pakistan

    Get PDF
    In Pakistan there is limited evidence for the levels and relationship of 25 (OH) Vitamin D [25(OH)D] status in pregnant women and their newborns while the association between maternal 25(OH)D and newborn anthropometric measurements remains unexplored. Sociodemographic data was collected from 213 pregnant mothers during their visit to a tertiary care hospital at the time of childbirth. Anthropometric measurements were performed on all mothers and their newborns and blood samples collected from both for 25(OH)D levels. Participants were classified into two groups according to their 25(OH)D status: Sufficient (25(OH)D ā‰„50nmol/l) and Deficient (25(OH)D 0.05). Our study shows a high prevalence of 25(OH)D deficiency in pregnant women and their newborns and a strong positive association between maternal and newborn 25(OH)D levels. Findings of this study indicate the importance of maintaining sufficient 25(OH)D levels during pregnancy

    Invasion speeds for structured populations in fluctuating environments

    Get PDF
    We live in a time where climate models predict future increases in environmental variability and biological invasions are becoming increasingly frequent. A key to developing effective responses to biological invasions in increasingly variable environments will be estimates of their rates of spatial spread and the associated uncertainty of these estimates. Using stochastic, stage-structured, integro-difference equation models, we show analytically that invasion speeds are asymptotically normally distributed with a variance that decreases in time. We apply our methods to a simple juvenile-adult model with stochastic variation in reproduction and an illustrative example with published data for the perennial herb, \emph{Calathea ovandensis}. These examples buttressed by additional analysis reveal that increased variability in vital rates simultaneously slow down invasions yet generate greater uncertainty about rates of spatial spread. Moreover, while temporal autocorrelations in vital rates inflate variability in invasion speeds, the effect of these autocorrelations on the average invasion speed can be positive or negative depending on life history traits and how well vital rates ``remember'' the past
    • ā€¦
    corecore