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Abstract

Numerical solution of the equations governing multiphase porous media flow
is challenging. A common approach to improve the performance of itera-
tive non-linear solvers for these problems is to introduce artificial diffusion.
Here, we present a mass conservative artificial diffusion that accelerates the
non-linear solver but vanishes when the solution is converged. The vanishing
artificial diffusion term is saturation dependent and is larger in regions of the
solution domain where there are steep saturation gradients. The non-linear
solver converges more slowly in these regions because of the highly non-linear
nature of the solution. The new method provides accurate results while sig-
nificantly reducing the number of iterations required by the non-linear solver.
It is particularly valuable in reducing the computational cost of highly chal-
lenging numerical simulations, such as those where physical capillary pressure
effects are dominant. Moreover, the method allows converged solutions to
be obtained for Courant numbers that are at least two orders of magnitude
larger than would otherwise be possible.
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1. Introduction

Modelling multiphase porous media flows is important in many subsur-
face reservoirs such as geothermal energy resources (Hilpert et al. (2016)),
groundwater sources and deep saline aquifers (Janković et al. (2006)), geo-
logical CO2 storage (Soltanian et al. (2016)), magma reservoirs (Solano et al.
(2014)) and hydrocarbon reservoirs (Tchelepi et al. (2007)). However, nu-
merical simulation of multiphase porous media flow is very challenging due
to its highly non-linear nature. The non-linearities primarily arise from the
saturation-dependence of relative permeability and capillary pressure (Jenny
et al. (2009); Debbabi et al. (2017a), Debbabi et al. (2017b), McWhorter and
Sunada (1990); Schmid and Geiger (2013); Kvashchuk (2015); Nooruddin and
Blunt (2016)).

Controlling the non-linearities is essential to obtain stable solutions with
Courant numbers that do not prohibitively increase the computational time.
Many methods have been suggested: chopping of saturation based on heuris-
tics (Jenny et al. (2009); Li and Tchelepi (2015b); Anderson (1965); Lott
et al. (2012); Salinas et al. (2017a)), ordering-based non-linear solvers (Kwok
and Tchelepi (2007); Natvig and Lie (2008); Hamon and Tchelepi (2016)),
modified flux discretisation methods (Lee et al. (2015); Hamon et al. (2016)),
continuation-Newton and parametrisation-based schemes (Younis et al. (2010);
Brenner and Cances (2017); Jiang and Tchelepi (2018)) and phase field ap-
proaches (Cogswell and Szulczewski (2017)).

A common method to stabilise the system arising from the discretisation
of the advection equation is to introduce artificial diffusion (Jameson (1995);
Quarteroni and Valli (2009)). However, it can be challenging to find a balance
such that the artificial diffusion accelerates convergence while not severely
modifying the final result (Quarteroni and Valli (2009)).

In (Salinas et al. (2017a)) a vanishing artificial diffusion (VAD) was pre-
sented. The concept was to gradually reduce the amount of artifical diffusion
as the solver converges, such that the artificial diffusion is small once con-
vergence is achieved. The method allows the use of larger artificial diffusion,
thus reducing the computational effort required for each non-linear solve,
whilst minimising the effect of the artificial diffusion on the final result.

In (Salinas et al. (2017a)), the convergence of the non-linear solver was
used to control the level of VAD by multiplying the artificial diffusion term
by the difference between the most recent saturation estimation and the one
obtained in the previous non-linear iteration. The method is very efficient;

2



however, it is not mass conservative, because the saturation estimation from
the previous non-linear iteration is introduced in the right-hand side of the
equations (Salinas et al. (2017a)), acting as a source/sink term for that spe-
cific phase.

Here, an improved, mass conservative VAD is presented. The new ap-
proach is based on two main concepts. First, VAD is introduced in all phases,
which ensures that mass is conserved. Any residual VAD left after the non-
linear solver converges behaves as a standard artificial diffusion. Second, the
VAD is based on the local saturation value. In this way, the VAD is large
in regions of the model domain where there are steep gradients in satura-
tion and smaller elsewhere. These regions are typically where the non-linear
solver converges more slowly because of the highly non-linear nature of the
solution.

The modifications from the VAD presented in (Salinas et al. (2017a)) yield
significant improvements. As we show here, the new formulation improves
the stability and efficiency of the non-linear solver, reducing the number
of non-linear iterations in all tested cases, irrespective of whether gravity
and/or capillary pressure are present and in highly heterogeneous reservoir
problems. The method is implemented and tested in a modified version of
the fixed point method of Anderson (Anderson (1965); Salinas et al. (2017a)).
However, it is a modification of the original continuum equations and should
also work for implementation based on the Newton-Raphson method (Aziz
and Settari (1979); Li and Tchelepi (2015a)).

The paper is organised as follows. The governing equations and numerical
methods are presented in Section 2. The new VAD implementation is detailed
in Section 3. The presented method is tested in a number of example cases,
including comparison against analytical solutions in Section 4. Finally, some
concluding remarks are presented in Section 5.

2. Governing equations

A summary of the equations is presented here; for details of the discreti-
sation method used, see (Jackson et al. (2015); Gomes et al. (2017)). The
multiphase Darcy’s law for a phase α is given by:

qα =
KrαK
µα

(−∇pα + ραg) , (1)
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Considering a wetting and a non-wetting phase and including capillary pres-
sure, Darcy’s Law can be written in a slightly modified form as:

vw = σ
w
uw = −∇p+∇pc + ρwg, (2)

vnw = σ
nw

unw = −∇p+ ρnwg, (3)

in which the subscripts w and nw stand for wetting and non-wetting phase
respectively, v is the force density, u is the phase saturation-weighted Darcy
velocity of phase, p and pc are the pressure and the capillary pressure, re-
spectively; ρ is the density of a phase, and σ

α
(where α is either the wetting

or the non-wetting phase) is defined as:

σ
α

= µαSα (KrαK)−1 , (4)

where Krα is the relative permeability, µα the viscosity and Sα the saturation
of phase α respectively and K is the permeability tensor.

The saturation equation for incompressible flow is:

φ
∂Sα
∂t

+∇ · (uαSα) = scty,α, (5)

where scty is a source term and φ is the porosity.
The system of equations is closed by ensuring that the sum of the satu-

rations is given by:
Sw + Snw = 1. (6)

The spatial discretisation considered in this paper is based on the Dou-
ble Control Volume Finite Element method (described in detail in (Salinas
et al. (2017b)), which is an improvement of the commonly used Control Vol-
ume Finite Element method (Forsyth (1991); Fung et al. (1992); Durlofsky
(1993, 1994); Geiger et al. (2004); Wheeler and Yotov (2006); Matthai et al.
(2007); Schmid et al. (2013); Jackson et al. (2015); Abushaikha et al. (2015);
Mostaghimi et al. (2015); Xie et al. (2016); Abushaikha et al. (2017)). Here,
the velocity is discretised using finite elements, but pressure and saturation
are discretised using control volumes. This modification improves the quality
of the pressure matrix for the large-angle elements often found in high-aspect
ratio, subsurface reservoir problems (Deveugle et al. (2011); Jackson et al.
(2015)). Solving the pressure matrix using the DCVFEM is faster than
the classical approach and can also provide solutions for systems where the
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classical approach fails. Moreover, pressure and saturation are consistently
represented, as both use the same shape functions. Therefore, fields calcu-
lated from the saturation but resolved in the pressure space, such as capillary
pressure and gravity effects, are in this way consistently represented.

Here, the element pair Pn−1DGPnCV is used. Pn−1 stands for the order
of discretisation of the velocity, DG stands for discontinuous Galerkin, Pn
refers to the order of discretisation of the pressure and CV denotes the use
of control volume shape functions. Note that the discretised velocity must
be of one degree less than that of the pressure. Time is discretised using
a Θ-method, where Θ smoothly varies between 0.5 (Crank-Nicolson) and
1 (implicit Euler) based on a total variation diminishing (TVD) criterion
(Pavlidis et al. (2014)). This ensures that the method is unconditionally
stable for any time-step size. Thus, the non-linear solver is the only factor
limiting the stability of the solutions. The flux is calculated using a high order
method with flux limiting to remove oscillations in saturation if required, as
described in (Gomes et al. (2017)).

The non-linear solver is a modified fixed point method of Anderson de-
tailed in (Salinas et al. (2017a)). It is a Picard iterative method, accelerated
by the use of (i) backtracking, (ii) an internal iteration around the highly cou-
pled solutions of velocity and saturation, (iii) a relaxation parameter based
on the history of convergence, and (iv) use of previous guesses for solution
fields; each of these methods increases the rate of convergence. Note that
the VAD presented here is independent of the non-linear solver and spatial
discretisation used and can be implemented in any method so long as the
time discretisation is implicit.

The presented numerical methods reported here are implemented in the
open-source code IC-FERST (Imperial College Finite Element Reservoir Sim-
ulaTor).

3. A mass conservative vanishing artificial diffusion

In (Salinas et al. (2017a)), an implememtation of VAD was presented
to help reduce the non-linearity of the equations, mainly controlled by the
saturation equation (Jenny et al. (2009)). The equation presented in (Salinas
et al. (2017a)) to introduce the VAD is as follows:

φ
∂Skα
∂t

+∇ · (uαSkα − κ∇(Skα − Sk′α)) = scty,α, (7)
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where κ is an over-relaxation term that controls the amount of artificial
diffusion and k is the non-linear iteration. This equation was introduced
only in one phase.

To introduce the new VAD term reported here, first Eq. 2 is modified by
introducing ∇κ:

vw = σ
w
uw = −∇p+∇pc +∇κ+ ρwg, (8)

Note that this equation is not used when solving for pressure; rather, Eq. 2
is used. However, equation (9) is used to formulate a modified velocity that
is then used in the mass conservation equation. The modified velocity is
obtained by moving ∇κ to the left-hand-side:

σ
w

(
uw − σ−1

w
∇κ

)
= −∇p+ ρwg, (9)

where terms between the brackets form the modified velocity. Substituting
this in the saturation equation (Eq. 5) yields:

φ
∂Skw
∂t

+∇ ·
(
Skw(uw − σ−1

w
∇κ)

)
= scty,w. (10)

Since κ depends on the saturation, the chain rule is applied to the ∇κ term,
obtaining:

φ
∂Skw
∂t

+∇ ·
(
Skw(uw − σ−1

w

∂κ

∂Skw
∇Skw)

)
= scty,w. (11)

We now choose to modify the wetting phase equation to ensure mass con-
servation and create the VAD term. To this end, Skw is substituted by the
difference between non-linear iterations of the saturation, (Skα−Sk′α), so the
term vanishes as the saturation converges:

φ
∂Skw
∂t

+∇ · (Skwuw)− 0.5∇ ·
(
Skwσ

−1

kw

∂κ

∂Skw
∇(Skw − Sk′w)

)
= scty,w, (12)

Next, to achieve mass conservation, we now also introduce the VAD term in
the non-wetting phase equation. The term multiplying the gradient is the
same for both phases (i.e. depends on the wetting phase), but the VAD term
is specific to each phase:

φ
∂Sknw
∂t

+∇ · (Sknwunw)− 0.5∇ ·
(
Skwσ

−1

kw

∂κ

∂Skw
∇(Sknw − Sk′nw)

)
= scty,nw.

(13)
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Note that only the saturation equations are modified; the remaining equa-
tions to be solved were defined in the previous section. By introducing
the VAD term in the mass conservation equations for both phases, the
source/sink terms balance, thus ensuring that mass is conserved. This can
easily be proved by combining Eq. 13 with Eq. 6:

φ
∂(1− Skw)

∂t
+∇·((1− Skw)unw)+0.5∇·

(
Skwσ

−1

kw

∂κ

∂Skw
∇(Skw − Sk′w)

)
= scty,nw,

(14)
which shows that the VAD term is the same as in Eq. 12 but with opposite
sign. Therefore, we conserve the saturations Skw and Sknw and, because the
system is incompressible, the mass of each phase.

Similar to (Salinas et al. (2017a)), a Peclet-like number (Psc = vwil/κ) is
used to control the amount of VAD that is introduced; this is the parameter
chosen by the user. To ensure that the VAD targets the most significant
non-linearities (such as shock-fronts), the VAD model follows a capillary-
pressure-like equation which is an exponential function of saturation and, for
element i, the VAD to be introduced is calculated as:

κi =
|v∗wi | l
Psc

(
Swi − Swirr
1− Swirr

)−nκ
, (15)

where l is the characteristic length of the domain, v∗wi is the force density
of the wetting phase of element i averaged over the dimensions (i.e. v∗wi =
ΣNn=1|vwij |n/N , where N are the number of dimensions), Psc is the chosen
Peclet-like number (user input parameter), nκ is the saturation exponent, Swi
is the saturation of the wetting phase for element i and Swirr is the irreducible
wetting phase saturation. The saturation term in brackets ensures that the
VAD focuses on saturation gradients, while the term outside the brackets
controls the magnitude of the VAD to be used.

The use of local κi is equivalent to having different materials with very dif-
ferent diffusion coefficients (potentially several orders of magnitude) through-
out the domain, which affects the performance of the non-linear solver. Using
a single value of κ throughout the domain provides better performance. The
amount of VAD introduced is still local despite the use of uniform κ because
the VAD also depends on the local difference in saturation between two non-
linear iterations. It is preferable to use a local measure of convergence to
control the local VAD as it is a better measure of the local performance of
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the non-linear solver. Here, we choose to calculate the uniform κ as an av-
erage of the maximum and minimum values of κi throughout the domain at
each time-level:

κ = 0.5(max(κi)−min(κi)). (16)

In order to select the value of Psc the user has to consider several issues.
Higher values of VAD should further accelerate convergence of the non-linear
solver; however, introducing very large VAD may cause the solution to devi-
ate too far from the actual solution, such that the non-linear solver will have
to backtrack more. Lower values of VAD may have little effect in reducing
the non-linearities of the system, such that there will be no improvement in
the convergence of the non-linear solver. As dicussed later, experience with
the method suggests that suitable values yield initial VAD at least two orders
of magnitude smaller than the viscous forces (i.e. Psc ≥ 100).

3.1. Effect of VAD on the flux

Here the stability of the introduced VAD is analysed considering its effect
on the upwinding direction used to advect information. From Eq. 12 it can
be seen that the flux across the boundary of a control volume is given by:

Fij = ΓijSkw(uwij − 0.5σ−1

kw

∂κ

∂Skw
∇(Skw − Sk′w)), (17)

where Γij is the boundary between control volume i and j and Fij is the
flux across the boundary. Here, the upwinding direction is defined by uwij ,
so introducing an effective flux that does not follow this direction may yield
non-monotonic saturation results.

It can be seen from Eq. 12 and 13, that for the VAD to completely vanish,
the term (Skw−Sk′w) has to be zero. However, it is very common to stop the
non-linear solver before this limit is reached; a typical criterion for conver-
gence might be when the infinitum norm of that difference is 0.01. Therefore,
the VAD may not entirely disappear. If this happens, the VAD acts like a
normal artificial diffusion term and, as discussed later, we have observed that
the results may lose monotonicity when using high-order methods/elements
to calculate the fluxes (as described in (Gomes et al. (2017))). In this case,
a larger value of Psc may be required or the convergence criterion may need
to be decreased. When using first-order schemes, we have observed that the
results are always monotonic.
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3.2. Algorithm implementation

In the implementation reported here, the tensor σ
kwij

is projected onto

the control volume interface and the saturation multiplying the vanishing
term, κ and σ

kwij
is calculated using the values from the previous non-linear

iteration, denoted using a prime, yielding:

φ
∂Skw
∂t

+∇·(Skwuw)−0.5∇·
(
Sk′wnij · σ−1

k′wij
· nij

∂κ′

∂Skw
∇(Skw − Sk′w)

)
= scty,w,

(18)
where nij is the outward pointing normal vector going from node i to node j.
Substituting κ, from Eq. 15 and calculating |v∗wi | using the values from the
previous non-linear iteration, the final equation is:

φ
∂Skw

∂t
+∇·(Skwuw)+0.5∇·

nκSk′wnij · σ−1
k′wij

· nij

|v∗
w′
i
| l(Sk′wi − Swirr)

(−nκ−1)

Psc(1− Swirr)−nκ
∇(Skw − Sk′w)

 = scty,w,

(19)

The terms multiplying ∇(Skw − Sk′w) are considered constant, yielding:

φ
∂Skw
∂t

+∇·(Skwuw)+0.5nκSk′wnij·σ−1

k′wij
·nij

|v∗w′i | l(Sk′wi − Swirr)
(−nκ−1)

Psc(1− Swirr)−nκ
∆(Skw−Sk′w) = scty,w,

(20)
In this way, an extra term is obtained; this is effectively a diffusion term,
which is then discretised as normal. This same procedure is performed for
the non-wetting phase.

In our experience, an exponent nκ = 2.0 in Eq. 15 provides the best
performance when physical capillary pressure is present. When capillary
pressure is not present nκ = 1.0 is preferable as it reduces the non-linearity
of the VAD term. These are the values used in the numerical experiments
reported here. Also, to avoid division by zero, the term(

Swi − Swirr
1− Swirr

)−nκ
(21)

is modified to include a tolerance:(
Swi + Stol − Swirr

1− Swirr

)−nκ
, (22)

where we choose here Stol = 10−3. Fig. 1 shows the potential value of VAD for
different saturations with Swirr = 0. It can be seen that the potential value of
VAD is very high for low saturation values and, therefore, at a shock-front,
and very low for medium to high saturation values behind a shock-front.

9



Figure 1: Potential value of VAD for different saturations considering the rest of the terms
to be one and Swirr = 0.

3.3. Vanishing Artificial Diffusion to guide the non-linear solver to a correct
solution

In porous media flow, there are four main non-linearities that strongly
affect the performance of the non-linear solver: steep saturation gradients
(’shock fronts’), gravity, capillary pressure and phase change (Li and Tchelepi
(2015b)). For simplicity in explaining the behaviour of VAD, we focus here
on shock fronts only. When iteratively solving a linear or non-linear system,
an initial solution estimate that is close to the final solution significantly
reduces the time required by the solver to achieve convergence. The concept
of VAD is to guide the non-linear solver towards the correct physical solution
by constantly moving the “goal” of the non-linear solver.

Fig. 2 shows the results obtained using different levels of artificial diffusion
without the vanishing term. It can be seen that the higher the artificial
diffusion introduced, the further away the obtained solution is from the actual
solution. From Fig. 2, one can see that using an initial Psc = 10, the non-
linear solver needs to modify the solution substantially to reach the final
correct solution. Using a value of Psc = 100, the effort required by the non-
linear solver is drastically reduced as the initial solution is much closer to the
final correct solution. However, the shock-front is less sharp, reducing the
complexity of the system that the non-linear solver has to resolve.
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Figure 2: 1D solutions using different levels of classical artificial diffusion, that would
be equivalent to the corresponding Psc values if the system were to converge without
the vanishing term. The black line is the result not using artificial diffusion. The blue,
green, yellow and orange lines are the results with classical artificial diffusion equivalent
to Psc = 10, 100, 500 and 1000 respectively.

3.4. Monotonicity results when using high-order methods and Vanishing Ar-
tificial Diffusion

As we show later, when using high-order methods/elements the saturation
solution obtained using VAD can in some cases be non-monotonic. When
using low-order elements with high-order methods to calculate fluxes, we
have observed that for values of Psc ≥ 100, monotonic solutions are obtained
if the first non-linear iteration uses upwinding to calculate the fluxes instead
of high-order methods. When using high-order elements and methods, it is
also necessary to use a robust non-linear solver such as the one described in
Salinas et al. (2017a). Values of Psc ≥ 100 are again required. Hence, non-
linearity in the solutions can be easily removed for the recommended value
of Psc ∼ 100.

4. Numerical experiments

The non-linear solver used is described in (Salinas et al. (2017a)). The
convergence criteria used here are, unless otherwise stated, that the relative
mass conservation of the system within a time-step has to be below 10−3 and
the infinite norm of the saturation difference between two consecutive non-
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linear iterations has to be below 10−2. A maximum of 25 non-linear iterations
per time-level is imposed.

To calculate the relative permeability and capillary pressure, the Brooks-
Corey models are used (Brooks and Corey (1964)). The relative permeability
is defined as:

krw (Sw) =

(
Sw − Swirr

1− Swirr − Snwr

)nw

, (23)

krnw (Snw) =

(
Snw − Snwr

1− Swirr − Snwr

)nnw

, (24)

where Snwr is the irreducible non-wetting phase saturation and nw and nnw
are the exponents for the wetting and non-wetting phases, respectively. Un-
less otherwise stated, the exponents of the relative permeability model used
are nw = nnw = 2. For the capillary pressure the model used is the Brooks-
Corey model (Brooks and Corey (1964)):

pc(Sw) = Pentry

(
Sw + Stol − Swirr
1− Snwr − Swirr

)−npc
, (25)

where Pentry is the entry pressure and npc is the exponent, set to npc = 0.5,.
For simplicity, homogeneous capillary pressure is considered in the tests, but
the method is not limited to this. The porosity is the same and homogeneous
for all the test cases and is set to φ = 0.2. All the remaining parameters for
the three test cases are provided in Table 1. In test cases 4.1 and 4.4, the

M0 K1 K2 Swirr Snwr ∆ρ Pentry uin length # ele ∆t
4.1 1 1.0 N/A 0.2 0.3 0 N/A 0.2 1.0 240 0.01
4.2 10 1.0 N/A 0.2 0.3 0.289 0.1 N/A 0.3 160 0.025
4.3 1 1.0 0.001 0.2 0.3 0.289 N/A N/A 1.0 720 1.0
4.4 10 10−12 10−15 0.2 0.2 289 105 N/A 220 25332 21600

Table 1: Model set-up for the test cases 4.1 – 4.4; M0 is the viscosity contrast between
the phases and uin is the inlet velocity. For test case 4.3 the permeability, porosity and
the relative permeability exponents are defined in subsection 4.3

domain is initially saturated with the non-wetting phase at (1− Swirr). Test
cases 4.1, 4.2 and 4.3 are dimensionless. For 4.4, S.I. units are used.

4.1. 1D immiscible displacement

The formulation presented is tested against the semi-analytical solution
of the Buckley-Leverett test case (Buckley and Leverett (1942)). Here, a
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non-wetting phase is displaced by a wetting phase through a homogeneous
domain (Fig. 3). This test case is used to study the effect of using different
values of artificial vanishing capillary pressure (Psc) for different Courant
numbers, discretisations and convergence criteria of the non-linear solver.

In this test, only the vanishing artificial capillary pressure is used to
stabilise the non-linear system. The time-step size is set to 10−2, different
Courant numbers are tested by using different meshes or element pairs, and
the Courant number ranges from 0.5 to 2.5.

Figure 3: Domain dimensions together with the structured mesh used and the saturation
profile at dimensionless time t = 0.2.

Fig. 4 shows the saturation profile for different values of Psc and element
pairs. The reference case is the same numerical experiment without VAD
but with all the stabilisation techniques presented in (Salinas et al. (2017a))
and provides the best possible solution for the given mesh and discretisation.
Fig. 4 shows the saturation profile for the P0DGP1(CV ) element pair. The
result with Psc = 100 is in good agreement with the semi-analytical result.
Using Psc = 10 provides a result with some oscillations, while Psc =∞ yields
a good result but at the expense of more non-linear iterations (Table 2). The
non-monotonic results appear when using a high-order advection scheme, or
when the non-linear solver does not achieve convergence. We tested this same
test case with upwinding and the results were always monotonic. As discussed
earlier, to remove the non-monotonicity, an initial non-linear iteration using
upwinding can be performed before employing the high-order scheme for
the remaining non-linear iterations. This is sufficient to provide monotonic
results with values of Psc ≥ 100. Lower values of Psc are not desirable in any
case, as they do not reduce the computational cost of the non-linear solver
while providing accurate results.

Fig. 4 (B) shows the saturation profile for the higher-order P1DGP2(CV )
element pair. The result with Psc = 100 is again in good agreement with
the semi-analytical result. Simulations with Psc = 1000 were carried out,
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showing no benefit when compared with the results using Psc = 100. Us-
ing Psc = 10 provides a result with some oscillations, while Psc = ∞ also
provides a result with oscillations, because the non-linear solver does not
converge. Note that the Psc = 100 results also show some non-monotonicity,
despite the use of upwinding for the first velocity iteration. However, by
using commonly employed stabilisation techniques in addition to VAD (as
used by Salinas et al. (2017a)), we obtain monotonic results (see Fig. 4 (B)
P1DGP2(CV )Psc = 100∗ plot). Monotonicity is always observed in numeri-
cal experiments with Psc ≥ 100 where stabilisation methods are used along
with upwinding for the initial velocity iteration.

Figure 4: Saturation as a function of distance along the solution domain, comparing
numerical solutions against the semi-analytical solution for the Buckley-Leverett problem.
Numerical results obtained using different values of Psc are shown; note that Psc = ∞
means that no VAD is used. (A) Results using the P0DGP1(CV ) element pair; (B)
results using the the P1DGP2(CV ) element pair. The result P1DGP2(CV )Psc = 100∗ ws
obtained using the stabilisation techniques presented in Salinas et al. (2017a) and shows
monotonic results.

Table 2 shows the number of non-linear iterations together with the L1

error for the results shown in Fig. 4. Psc = 100 yields the best results,
reducing the number of non-linear iterations and the error more than the
other options. For the P1DGP2(CV ), element pair, the case with Psc = 100
requires many more iterations than the case with Psc = 10, but the error in
the latter is higher, and therefore, Psc = 100 is still preferable.

Table 3 shows the number of non-linear iterations and the L1 error on
a finer mesh (960 elements) when performing 20 time-steps and using the
P0DGP1(CV ) element pair. Again Psc = 100 provides the best combination
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Element pair Psc # non-linear iterations L1 error ×10−2

P0DGP1(CV ) 100 85 1.59
P0DGP1(CV ) 10 93 2.52
P0DGP1(CV ) ∞ 201 1.47
P1DGP2(CV ) 100 168 1.32
P1DGP2(CV ) 10 83 2.44
P1DGP2(CV ) ∞ N/A 1.71

Table 2: Total number of non-linear iterations to perform 20 time-steps and the final
error compared with the semi-analytical solution for the Buckley-Leverett problem using
different values of Psc and element pairs.

of performance and error reduction.

Psc # non-linear iterations L1 error ×10−2

100 163 1.01
10 78 2.53
∞ N/A 2.16

Table 3: Total number of non-linear iterations to perform 20 time-steps and the final
error compared with the semi-analytical solution for the Buckley-Leverett problem, using
different values of Psc and one mesh refinement yielding a mesh with 960 elements.

It is important to note that, since the VAD used depends on the difference
between the values of saturation of the last two non-linear iterations, this
effectively means that the error of the results and the appropriate value of Psc
does depend on the convergence criteria used. When the system converges,
the difference between the values of saturation of the last two non-linear
iterations is small and of the order 10−2 or 10−3; however, the VAD introduced
may be larger (1) resulting in a residual artificial diffusion that persists in the
final result. This residual VAD could, in principle, be completely removed
by performing some extra non-linear iterations with no VAD. However, we
have observed that the extra computational cost is very high; more than one
non-linear iteration is typically required, and the benefit is marginal.

Fig. 5 shows shows the saturation profile for the P0DGP1(CV ) element
pair, using three different convergence criteria and two different values of
Psc. It can be seen that for a very strict convergence criterion, Psc = 10
provides very good results and there is virtually no difference compared to
using Psc = 100 (Table 4); moreover, the results are monotonic regardless
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of the VAD used. However, for more relaxed convergence criteria this is no
longer true and the cases using Psc = 100 provide better results. Therefore,
a value of Psc = 100 is preferable. Table 4 shows that, depending on the
convergence and Psc number used, the number of non-linear iterations and
solution accuracy obtained may vary. However, Psc = 100 provides the best
combination of fewer non-linear iterations and more accurate results.

Figure 5: Saturation as a function of distance along the solution domain, comparing
numerical solutions against the semi-analytical solution for the Buckley-Leverett problem.
Numerical results are shown for different convergence criteria and different values of Psc.
’Precise’ denotes a convergence criterion where the infinite norm of the difference of the
saturation between non-linear iterations has to be below 10−5; ’medium’ has the norm
below 10−2 and ’imprecise’ has it below 3× 10−2.

4.2. Counter-current flow driven by gravity and capillary forces

We now test the ability of the method to simulate gravity-capillary equi-
librium in a situation where the capillary forces are dominant; we explore
again the effect of the VAD (Psc) for different discretisations and Courant
numbers (ranging from 1.5 to 17). The initial condition of the model has
a more dense wetting phase above a less dense non-wetting phase, so flow
driven by both gravity and capillary forces occurs to reach the equilibrium
state. This equilibration step is required to initialize any reservoir simulation
model that includes (drainage) capillary pressure. We test the accuracy with
which the simulation reaches equilibrium by comparing the wetting phase
saturation as a function of height against a simple analytic solution where
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Convergence level Psc # non-linear iterations L1 error ×10−2

Precise 100 60 1.46
Precise 10 98 1.46
Medium 100 4 1.59
Medium 10 4 2.52

Imprecise 100 4 1.75
Imprecise 10 2 2.58

Table 4: L1 error and number of non-linear iterations required to achieve convergence in
the final time-step of the Buckley-Leverett problem (t = 0.2) using different convergence
criteria of the non-linear solver and different values of Psc. Notice that in the ’precise’ case,
the number of required non-linear iterations is much higher than in the other two cases;
this is because the requested precision is 3 orders of magnitude smaller than the ’medium’
case and a non-linear solver with linear convergence is being used.

Figure 6: Domain dimensions together with the structured mesh used and the saturation
profile at dimensionless time t = 0.5.

h is the height above datum, taken here to be the level at which capillary
forces are zero. The analytical solution is defined as:

pc(Sw) = (ρw − ρnw)gh (26)

Fig. 7 shows the comparison of the water saturation profile obtained nu-
merically for different values of Psc and using two different element pairs
(P0DGP1(CV ) and P1DGP2(CV )). The maximum Courant number is 17.
It can be seen that the results with Psc = 100 are in good agreement with the
analytical solution and the reference numerical solution. However, for large
VAD i.e. Psc = 1 and Psc = 10, the solution is wrong with obvious diffusive
effects.

The number of non-linear iterations in order to perform 20 time-steps,
together with the L1 error are in Table 5. The results confirm that the
best option is to use Psc = 100, as it reduces the number of non-linear it-
erations whilst also keeping the error low. For P1DGP2(CV ) the results

17



Figure 7: Saturation as a function of distance along the solution domain, comparing
numerical solutions against the analytical solution for gravity-capillary equilibrium. Only
converged numerical results are presented. The reference numerical solution was obtained
without VAD.

are less accurate because the Courant number is higher than in the case with
P0DGP1(CV ). To run the reference simulation without VAD (see Fig. 7), the
time-step size needed to be reduced by 3 orders of magnitude, totalling 41246
non-linear iterations. Therefore, we can conclude that VAD is extremely use-
ful to help the non-linear solver achieve convergence when capillary pressure
plays a key role in the numerical experiment.

Element pair Psc # non-linear iterations L1 error ×10−2

P0DGP1(CV ) 100 50 1.65
P0DGP1(CV ) 10 48 4.49
P0DGP1(CV ) 1 199 6.89
P1DGP2(CV ) 100 109 1.90
P1DGP2(CV ) 10 460 9.17
P1DGP2(CV ) 1 413 18.9

Table 5: Total number of non-linear iterations to perform 20 time-steps and the final
error compared with the analytical solution for gravity-capillary equilibrium using different
values of Psc and element pairs.
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4.3. Flow driven by gravity in a heterogeneous domain

For this test case we study the performance of VAD when flow is driven
only by gravity. Initially, the domain is homogeneously filled by two fluid
phases (above the immobile fraction); then, due to gravity, the phases segre-
gate. This is a very challenging case due to the appearance of many shock-
fronts moving with counter-current flow. Moreover, to explore a wider range
of parameters, the domain is heterogeneous with different relative perme-
ability curves, porosities and permeabilities. Fig. 8 (A) shows the mesh used
and the regions with different material properties. For this test case only
solutions with the optimal Psc (i.e. Psc = 100) and no VAD are tested.

Figure 8: (A) Domain dimensions and mesh used. The dark, gray and white regions have
a permeability of 1, 0.05 and 0.001, porosity of 0.3, 0.2 and 0.1, respectively. The dark
and grey regions have quadratic relative permeability curves, while the white has linear
relative permeability curves.(B) Saturation of the wetting phase after two time-steps using
the P0DGP1(CV ) element pair. (C) Saturation of the wetting phase after at the same
time level as (B) using the P1DGP2(CV ) element pair. (D) Saturation of the wetting
phase after reaching equilibrium.

Fig. 8 (B-C) and Fig. 8 (D) show the saturation of the wetting phase in
the gravity dominated problem at dimensionless time 0.1 and after reaching
equilibrium, respectively. It can be seen that many shock-fronts are created
(two per region initially) and propagate through the domain to finally reach
the equilibrium state shown in Fig. 8 (C).

Table 6 shows the number of non-linear iterations required to perform 10
and 20 time-steps for the P0DGP1(CV ) and the P1DGP2(CV ) element pairs
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Element pair Psc # non-linear iterations Courant number
P0DGP1(CV ) 100 152 308.54
P0DGP1(CV ) ∞ N/A 488.34
P1DGP2(CV ) 100 397 348.49
P1DGP2(CV ) ∞ N/A 486.82

Table 6: Total number of non-linear iterations to perform 10 time-steps in the gravity dom-
inated problem for the P0DGP1(CV ) element pair and 20 time-steps for the P1DGP2(CV )
element pair, and the maximum Courant number that appears during the simulations for
different element pairs and Psc.

respectively. For the P1DGP2(CV ) element pair, the time-step is halved to
reduce the expected maximum Courant number. In both scenarios without
VAD, the non-linear solver fails to achieve satisfactory convergence and there-
fore the results are incorrect. However, using VAD the results obtained are
physically correct and the number of non-linear iterations is small consider-
ing the high Courant number and the difficulty of the numerical experiment.
We conclude again that VAD is extremely useful to help the non-linear solver
achieve convergence.

4.4. Faulted reservoir with contrasting permeability layers

In this final test case a more realistic heterogeneous domain is modelled
(Fig. 9 (A)). There is no analytical solution available and the performance
of difference values of Psc are tested.

The domain is defined by a set of contrasting permeability layers (10−12m2
and 10−15m2) that have been offset by two generations of faults with differ-
ing dip and strike. The model was created using a surface-based modelling
algorithm which creates geological models using NURBS (Non-Uniform Ra-
tional B-Splines) surfaces (Jacquemyn et al. (2019)). The mesh was created
using an automated geometry-adaptive meshing workflow with the NURBS
surfaces as input (Melnikova et al. (2016)).

In this experiment, the left boundary is open with an inlet pressure of
P = 107 Pa and the right boundary is open with a defined pressure of
P = 2 × 105 Pa; the other boundaries are closed to flow. Water is in-
troduced through the higher pressure boundary to displace oil through the
lower pressure boundary. Initially, the model is saturated with oil, and water
at the irreducible saturation. The simulation is run using the element pairs
P0DGP1(CV ) and P1DGP2(CV ) with Psc = 100 and Psc = ∞ (i.e. κ = 0);
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Figure 9: (A) Domain dimensions together with the mesh used and the permeability map.
(B) Saturation profile after 5 days using the P0DGP1(CV ) element pair. (C) Saturation
profile after 5 days using the P1DGP2(CV ) element pair.

the convergence criteria is the most relaxed i.e. the infinite norm has to
be below 0.03. Also, the time-step size (Table 1) is reduced by a factor of
eight for the element pair P1DGP2(CV ), to keep similar effective Courant
numbers. Table 7 shows the number of non-linear iterations for these nu-
merical experiments, together with the maximum Courant number in each
simulation. It can be seen that the use of VAD significantly reduces the com-
putational effort, allowing accurate solutions with larger Courant numbers.
Moreover, in simulations without VAD, the maximum number of non-linear
iterations was reached several times; thus convergence was not achieved and
the solutions are not accurate.

5. Conclusions

An artificial diffusion that conserves mass, targets sharp shock-fronts and
vanishes as the non-linear solver converges has been presented. Results show
the efficiency of the method in reducing the number of non-linear iterations to
achieve convergence under different scenarios. The addition of the presented
VAD in the multiphase porous media flow equations significantly reduces the
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Element pair Psc # non-linear iterations Courant number
P0DGP1(CV ) 100 117 33.25
P0DGP1(CV ) ∞ N/A 38.67
P1DGP2(CV ) 100 767 149.30
P1DGP2(CV ) ∞ N/A 173.82

Table 7: Total number of non-linear iterations to perform 20 time-steps in the fault model
for the P0DGP1(CV ) element pair and 160 time-steps for the P1DGP2(CV ) element pair,
and the maximum Courant number that appears during the simulations, for the different
element pairs and Psc.

non-linearity of the governing equations while minimising the effect of diffu-
sion in the final results, leading to a faster and more stable non-linear solver.
Different values of VAD have been studied, determined by a dimensionless
Peclet-like number Psc that provides a robust parameter to obtain optimal
results. Results show that the optimal Peclet number requires the artificial
diffusion forces introduced to be two orders of magnitude smaller than the
viscous forces; this is to ensure that the final result is not affected by the
diffusion introduced. Thus, the recommended value for VAD in a generic
application is Psc = 100 which, in combination with an initial use of upwind-
ing to calculate the fluxes and a robust non-linear solver, will also guarantee
monotonicity of the solution. The presented method is independent of the
solver used and should equally work for Newton-Raphson methods.
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