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Abstract Reservoir models typically contain hundreds-of-thousands to millions of
grid cells in which petrophysical properties such as porosity and permeability vary on
a cell-to-cell basis. However, although the petrophysical properties of rocks do vary on
a point-to-point basis, this variability is not equivalent to the cell-to-cell variations in
models. We investigate the impact of removing cell-to-cell variability on predictions
of fluid flow in reservoir models. We remove cell-to-cell variability from models
containing hundreds of thousands of unique porosity and permeability values to yield
models containing just a few tens of unique porosity and permeability values grouped
into a few internally homogeneous domains. The flow behavior of the original model
is used as a reference. We find that the impact of cell-to-cell variability on predicted
flow is small. Cell-to-cell variability is not necessary to capture flow in reservoir
models; rather, it is the spatially correlated variability in petrophysical properties that
is important. Reservoir modelling effort should focus on capturing correlated geologic
domains in the most realistic and computationally efficient manner.
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1 Introduction

The spatial distribution of petrophysical properties in subsurface fluid reservoirs is
controlled by the geologic processes that formed the reservoir and typically has
a significant impact on fluid flow (Gémez-Hernandez and Wen 1998; Miller et al.
1998; Jackson et al. 2003, 2005; Jankovic et al. 2006; Deveugle et al. 2011; Graham
et al. 2015b) It is, therefore, important to capture geologic heterogeneity accu-
rately and realistically in reservoir models. In most modelling workflows, the model
volume is subdivided early in the workflow into a grid or mesh that contains a
large number (typically hundreds-of-thousands to millions) of discrete volumes (grid
blocks/cells/elements or similar, heretoforward termed cells) and geostatistical meth-
ods are used to populate these cells with petrophysical properties (Janssen et al. 2006;
Feyen and Caers 2006). The equations governing fluid flow are then discretized and
solved numerically (e.g. Helmig and Huber 1998; Jackson et al. 2015).

In some studies, the same grid is used to model the petrophysical properties and
solve the flow equations; more typically, the flow equations are solved using a coarser
grid and petrophysical properties upscaled from the finer grid. In either case, the grid
used to simulate flow contains petrophysical properties that vary on a cell-to-cell basis
(e.g. Fig. 1a).

There are several problems with this workflow. First, models are typically compu-
tationally expensive to create and maintain, as they contain a large number of cells.
Second, upscaling from one grid to another can resultin a loss of model fidelity (Renard
and De Marsily 1997). Finally, the petrophysical properties vary from cell-to-cell at
a length-scale that is controlled by the chosen grid geometry and resolution, rather
than the underlying geological heterogeneity. While petrophysical properties of rocks
do vary on a point-by-point basis [where a point here corresponds to a Representative
Elementary Volume (e.g. Nordahl and Ringrose 2008)], this variability is at a different
(and usually much finer) scale than the cell-to-cell variability captured in reservoir
models. That petrophysical properties and flow equations are discretized on the same
grid appears to be an accidental outcome of the gradual evolution of modelling work-
flows. Discretization of the petrophysical properties should be designed to preserve
those features that are most important to flow; discretization of the flow equations
should be designed to yield the most accurate solutions for the lowest computational
cost. It is highly improbable that a single grid will meet both of these requirements.

An alternative to the grid-based modelling workflows described above is to use
surface-based modelling (e.g. Xie et al. 2001; Pyrcz et al. 2005; Jackson et al. 2005,
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Fig. 1 a Reservoir models typically contain cell-to-cell variations in petrophysical properties; b The geo-
logical concept captures the architecture of key heterogeneities. Adapted from Christie and Blunt 2001

@ Springer



Math Geosci (2021) 53:571-596 573

2009, 2015; Sech et al. 2009; Zhang et al. 2009; Caumon et al. 2009; Graham et al.
2015a,b; Massart et al. 2016; Jacquemyn et al. 2018). In this approach, all geolog-
ical heterogeneity that impacts flow is modelled as discrete volumes, or ‘geological
domains’, bounded by surfaces. A nested hierarchy of surfaces can represent multi-
scale heterogeneity. The surfaces are modelled without reference to an underlying
grid; a grid or mesh is created only when required for numerical calculations. The grid
cells inherit the petrophysical properties of the parent geological domain, which may
be constant, or vary according to locally defined trends consistent with the underly-
ing geologic concept: for example, to reflect upwards or downwards grading in grain
size, or proximal to distal trends in reservoir quality. In both cases, the model can be
constructed without reference to an underlying grid or mesh: petrophysical properties
are assigned to each grid cell or mesh element only when the grid or mesh is created
for numerical calculations.

There are several potential advantages to surface-based modelling: surfaces can
accurately and realistically capture complex geological features at low computational
cost; the model geometry can be created without reference to a grid or mesh defined
early in the workflow, so the grid resolution does not place restrictions on model
resolution, and the surfaces can be used to constrain the geometry of a grid or mesh that
is optimally designed for the numerical solution of interest. However, in surface-based
modelling, the short length-scale, cell-to-cell variability in petrophysical properties
observed in grid-based models is omitted (e.g. Fig. 1b). It is not yet clear whether this
cell-to-cell variability is required to properly capture flow. If cell-to-cell variability
can be omitted from reservoir models while still correctly predicting fluid flow, then
the route is open to focus modelling effort on capturing geologically defined, surface-
bounded domains in models that are ‘fit for purpose’ (Ringrose and Bentley 2015;
Bentley and Ringrose 2017).

No previous studies have specifically investigated the importance of cell-to-cell
scale variability on predicted fluid flow, although some have tested the relative impor-
tance of modelling petrophysical property variations within, and between, geologically
defined domains that correspond to lithofacies or lithofacies assemblages. Bianchi
and Zheng (2016) found that a key control on contaminant flow was the connec-
tivity of different lithofacies types, which were associated with significant contrasts
in petrophysical properties. Similarly, Feyen and Caers (2006) found that lithofacies
geometry (and the related permeability variation) was more important to solute migra-
tion than the distribution of permeability within lithofacies. However, in both studies,
cell-to-cell variability in petrophysical properties within lithofacies was retained, so
the hypothesis that cell-to-cell variability is not important to flow was not tested.
White and co-workers (White and Barton 1999; Willis and White 2000; White et al.
2004) examined a number of petrophysical modelling approaches including homoge-
nized lithofacies, assigning lithofacies-specific geometric mean values of permeability.
Other approaches tested used geostatistical methods following Deutsch and Journel
(1998) to populate petrophysical properties within lithofacies, yielding cell-to-cell
variability. Comparison of the models using flow-based measures showed that if the
length scale of petrophysical variability was small with respect to the length scale of
the problem of interest, the impact on flow was small.
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In this paper, we test the hypothesis that cell-to-cell variability can be omitted in
reservoir models. It is not an upscaling study; rather, it is a study designed to test
whether it is necessary to model cell-to-cell scale variability in petrophysical proper-
ties in the first place. If this variability is omitted, then it does not need to be upscaled.
Nor is it a study designed to test whether small length-scale geologic heterogeneity is
important to flow. Numerous previous studies have used nested, hierarchical models
to test the impact on flow of heterogeneity at small- to large length-scales, and shown
that both can be significant (e.g. Jones et al. 1995; Howell et al. 2008; Choi et al.
2011). However, the cell-to-cell variability in grid-based reservoir models does not
capture small length-scale heterogeneity: petrophysical properties in real rocks, unlike
grid-based models, are not homogeneous over close-to-rectangular volumes measur-
ing of order 10s to 100sm laterally and 10s to 100scm vertically. The cell-to-cell
variability observed in grid-based reservoir models is an artefact of applying pixel-
based geostatistical modelling methods on a grid of arbitrary resolution and geometry
that is unrelated to the resolution and geometry of geologic heterogeneity present in
the reservoir.

To test the hypothesis, we develop a workflow that removes cell-to-cell variability
from conventional grid-based models, each of which initially contain several hundred
thousand unique values of porosity and permeability, to yield models containing just
a few tens of unique porosity and permeability values grouped into a few hundreds to
a few thousands of domains. The same initial grid is used to solve the flow equations
and the flow behavior of the original model is used as a reference. Note that we do
not propose this workflow as a practical method to construct reservoir models; it is
implemented here only to test the hypothesis in question.

2 Test Cases

Three reservoir-scale models were used as test cases. The first two models are synthetic
and represent unfaulted reservoirs deposited in fluvial and shallow marine environ-
ments. The third is a real reservoir comprising fluvial, deltaic and shallow marine
deposits divided into several different fault blocks. The synthetic models were taken
from the SPE 10 Model 2, a classic benchmark model (see Christie and Blunt 2001),
heretoforward referred to as the ‘SPE 10 Model’. This model has been widely used
to represent a challenging problem for reservoir simulation with a highly heteroge-
neous distribution of petrophysical properties. All three models simulated multiphase
flow where oil is displaced by water, although we suggest that the key findings of
the study generalize to other types of flow relevant to aquifers and CO, storage. The
impact of heterogeneity on flow in the synthetic models was tested using two different
injector/producer well configurations and three sets of oil/water fluid properties. The
real reservoir case used the properties of the fluids in place and the well configuration
applied in the field development.
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2.1 Lower SPE 10: Fluvial Model

The first synthetic model comprised the lower 50 layers of the SPE 10 Model, which
was originally constructed to represent reservoirs in the Upper Ness formation, part
of the Middle Jurassic Upper Brent Group in the Northern North Sea (Mitchener et al.
1992). The Upper Ness formation was largely deposited in a non-marine, fluvial envi-
ronment and reservoirs are typically characterised by high permeability channelized
sandbodies surrounded by low permeability mudstone (Mitchener et al. 1992). The
synthetic model with dimensions of 365 x 670 x 30 m is described on a regular
60 x 220 x 50 Cartesian grid (Fig. 2a to c). The model contains high permeability
channelized sandbodies surrounded by low permeability mudstone and the modelling
of these different lithofacies types yields bimodal porosity and permeability distribu-
tions (Fig. 2d to f). The model has a variable permeability anisotropy (Kv/Kpy) ratio
of 0.3 in the sandstone and 10~3 in the mudstone.
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Fig. 2 Petrophysical properties within the Lower SPE 10 Model. Plots a to ¢ show the spatial distribution
of horizontal permeability in (a) 3D; b vertical cross section (X—X’) and ¢ horizontal cross section (Y-
Y’). Dimensions in metres. Plots d to f show the frequency distribution of d horizontal permeability; e
vertical permeability and f porosity. Plots d to f also show the frequency distribution after division into
three segments; see “Method” section for more details

@ Springer



576 Math Geosci (2021) 53:571-596

2.2 Upper SPE 10: Shallow Marine Model

The second synthetic model comprised the upper 35 layers of the SPE 10 Model with
dimensions of 365 x 670 x 21 m, described on a regular 60 x 220 x 35 Cartesian grid.
This model was originally constructed to represent reservoirs in the Tarbert formation,
which directly overlies the Upper Ness formation. The Tarbert formation was largely
deposited in a shallow marine environment and reservoirs are typically characterized
by an overall upwards coarsening and general distal to proximal coarsening succes-
sion (Mitchener et al. 1992). However, there is no strongly correlated heterogeneity
present in the model and no clear evidence of upwards coarsening or distal to proxi-
mal coarsening trends (Fig. 3a to c). The porosity and horizontal permeability show
uni-modal distributions; however, the vertical permeability exhibits a bimodal distri-
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Fig. 3 Petrophysical properties within the Upper SPE 10 Model. Plots a to ¢ show the spatial distribution
of horizontal permeability in (a) 3D; b vertical cross section (X—X') and ¢ horizontal cross section (Y-Y).
Dimensions in metres. Plots d to f show the frequency distribution of d horizontal permeability; e vertical
permeability and f porosity
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bution. Although not clear from Christie and Blunt (2001), it appears that two different
Kv /Ky ratios of 0.3 and 10~ were applied in the upper SPE 10 model (Fig. 3d to f).

2.3 H-Field: North Sea Reservoir

The real field example is located in the East Shetland Basin. The field comprises a
number of N-S trending, westerly dipping, Mesozoic fault blocks. The reservoir is
provided by fluvial, deltaic and shallow marine sandstones of the Brent Group, Lower
Jurassic Statfjord Formation and Upper Triassic Upper Lunde Formation (Ritchie
2003). Bitumen horizons observed at specific levels suggest a staged filling of the
reservoir, protecting up-dip regions from continued diagenesis (Baillie et al. 1996).
The reservoir therefore exhibits significant permeability contrasts between layers due
to this complex diagenetic phenomenon (Fig. 4a to c), with marked improvement in
reservoir quality above the paleo-oil-water contact (Baillie et al. 1996). However, the
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Fig. 4 The H-Field Model. Plot a shows the 3D spatial distribution of horizontal permeability; plot b
shows the fault blocks, where red indicates the fault plane; plot ¢ shows the location of production wells in
green and water injection wells in blue. Dimensions in metres. Plots d to f show the frequency distribution
of d horizontal permeability; e vertical permeability and f porosity
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petrophysical properties exhibit a uni-modal frequency distribution (Fig. 4d to f). The
structure of the reservoir model is complex, comprising a number of fault-bounded
blocks, described on a 58 x 145 x 40 corner point grid with stair-stepped faults (Fig. 4a
to c).

2.4 Rock and Fluid Properties

The rock properties used in the SPE 10 models were the same as Christie and Blunt
(2001). The relative permeability model is based on the Brooks—Corey correlation,
defined by

Sw - Swirr w
Kiw(Sw) = ——— 1
rW( W) (1 - Swirr - Sor) ( a)
So — Shwr >n0
Kio(So) = ———7+-—-) ., 1b
10(So) (1 — Swir — Sor (1b)

where Ky, (Sw) and K, (S,) are, respectively, the water and oil relative permeabilities,
Swirr and Sy are the irreducible water and oil phase saturations, and ny, and n,, are the
exponents for the water and oil phases. The irreducible saturations used are Syir =
Sor = 0.2 and the exponents are ny, = n, = 2. Gravity and capillary pressure
were neglected for the SPE 10 models, following Christie and Blunt (2001). The
modelled water viscosity was 1 x 1073 Pas and displacements were simulated using
three different modelled oil viscosities of 1 x 1073, 3 x 1073 and 10 x 1073 Pas
respectively. This allowed the effect of mobility ratio to be tested.

The oil composition in the H-Field varies with depth, with volatile oil at the base
of the hydrocarbon column evolving to gas condensate at the top of the column with
no sharp change in composition. Consequently, three phase relative permeability and
capillary pressure curves were required in the model. The model consists of two regions
in which the oil-water capillary pressure curves are markedly different. The water—oil
and gas—oil relative permeability curves are uniform in the model across both regions

The Leverett J-Function was used to scale the water—oil and gas—oil capillary func-
tions to the rock porosity and permeability. The modelled water viscosity is 0.35x 1073
Pas while the hydrocarbon viscosity is modelled using the compositional viscosity cor-
relation of Lohrenz et al. (1964) ranging from 0.07 to 1.91 x 1073 Pas. The remaining
model parameters are summarized in Table 1. The water/oil displacement process in
all models was simulated using commercial software.

2.5 Well Placements and Controls

Two different injector/producer well configurations were used in the synthetic models
to investigate whether the hypothesis tested here holds regardless of the dominant flow
direction relative to the modelled heterogeneity. The first induced predominantly radial
flow, using an inverted five spot pattern, with a central injector and four producers at
the corners of the model. The second induced predominantly linear flow, using a line
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drive pattern, with a row of injectors on one face and a row of producers on the other
face of the model. The production wells flowed at a fixed bottom hole pressure and
the injection well(s) flowed at a fixed injection rate. For the H-Field case, the flow
directions were dictated by the well placements chosen for the field development. The
production and injection wells were set to flow at the historic (measured) rates.

3 Methodology

The methodology used in this paper removed the cell-to-cell variability in petrophys-
ical properties while keeping the grid resolution fixed. The flow behavior was then
measured using a ‘Goodness of Fit’ between the well responses of the refined models
and the corresponding base model. The following well responses were chosen for the
synthetic models: (1) oil rate, (2) water cut (the fraction of the produced fluid that
is water) and (3) the bottom hole pressure of the injection well(s). For the H-Field
model, the well responses used for the Goodness of Fit were (1) gas rate; (2) water cut
and (3) the bottom hole pressure of the injection wells. In addition to these ‘global’
parameters, the first arrival time of water (i.e. the time of water breakthrough) at the
production wells was also tested in all models. Water breakthrough time is sensitive
to the ‘local’ flow around the production wells.

3.1 Goodness of Fit

The normalized root-mean square deviation was used to determine the Goodness of
Fit of an individual well response for each well

T
Z;:] (J’r*,w,t - yr,w,t)2
T
z:tzl(yr*,w,t)2

Er,w =1- (2)

where E: y is the Goodness of Fit for a given response (r) in a given well (w), /'y, ;
is the well response on the base model and yr v ; is the well response on the refined
model. The Goodness of Fit ranges between -inf (bad fit) and 1 (perfect fit). The
averaged Goodness of Fit, for a given response over all the wells, is then given by E;

Suet Erw

Ep= =

3

Finally, E is the Goodness of Fit for the whole reservoir, averaged over all of the
wells and all of the well responses:

S Er
N

E= “4)
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3.2 Removal of Cell-to-Cell Variability

The workflow removed cell-to-cell variability in petrophysical properties in a two-step
process. First, the base model was segmented into a number of discrete domains with
internally homogeneous petrophysical properties. Uniform petrophysical values were
assigned to each segment, calculated using the arithmetic average of the cell-based
values within that segment. A series of simulations were then run on each segmented
model. Flow behavior was compared using the Goodness of Fit described in the pre-
vious section (Eq. 4). The optimal number of segments was defined as the number
of segments above which the Goodness of Fit between segmented and base models
did not significantly increase. Second, the number of discrete domains in the optimum
segmented model was reduced by using a clustering algorithm based on neighborhood
filtering. The Goodness of Fit of the subsequent clustered model is then determined.
The optimal window size (in terms of Goodness of Fit) depends on the connectivity
of the domains and was determined by trial and error. The neighborhood algorithm
is most suited to a Cartesian grid as it assumes simple neighborhood connections.
Consequently, the clustering of the H-Field model (built on a corner point grid) was
not optimal, but, as will be shown later, proved sufficient.

The workflow implemented the following steps:

Step 1.1 The log-space distribution of the horizontal permeability was used to
divide the data into Z discrete segments. This was done by dividing the range
[min(log;((Kn)), max(logo(Ku))], where Ky is the horizontal permeability field,
into Z non-overlapping, equal (in range) segments.

Step 1.2 An indicator function I (x) was introduced, such that 7(x) = 1 if the
horizontal permeability at grid-block x is a member of Segment 1, I (x) = 2 if the
horizontal permeability is a member of Segment 2, and so on, i.e.

I1:X—{l,2,...7}
1, if Kg(x) € Segment 1

2, if Kg(x) € Segment 2
10 =1, , ®)

Z, if Kp(x) € Segment Z

where x is the grid cell number and Z is the total number of segments. The same
indicator function was used to segment the vertical permeability and porosity.

Step 1.3 The property values within each segment were homogenized to yield a
single value for each. Porosity was averaged using the volume-weighted arithmetic
mean. Horizontal permeability was averaged using an arithmetic average and vertical
permeability using a geometric average.

Step 1.4 The indicator function was used to distribute the averaged properties on
the original grid. The resulting model is now called a ‘segmented’ model. Figure 5a
shows an example segmentation of the horizontal permeability in the Lower SPE 10
Model using Z = 3, i.e. three segments.

Step 1.5 The Goodness of Fit (E) of the flow performance between the segmented
and base models was then calculated based on the results of numerical simulations of
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10000

1000

Fig.5 Segmentation and clustering of the Lower SPE 10 Model. a Segmented model with three segments.
b 3 x 3 x 3 cube around an input cell during clustering. The central cell’s value is then replaced with the
modal value of the neighboring cells; here a green permeability value is replaced by a blue one. ¢ Clustered
model. The cell-to-cell variability is removed, creating more geologically meaningful domains

flow in each model. Steps 1-4 were repeated, increasing the number of segments (Z)
after each iteration, until no significant improvement in E was seen. At this stage, this
‘optimal’ segmented model will contain fewer and larger domains than were present
in the base model. However, various isolated domains comprising just one or a few
cells remained in the model.

Step 2.1 A sliding neighborhood algorithm (Thompson and Shure 1995) was applied
on the segmented model (Fig. 5). The algorithm scans the model, cell-by-cell, creating
a ‘window’ containing a chosen number of cells around each input cell (in this example,
the window size is 3 x 3 x 3). The input cell is then replaced by the modal value of all
cell values in the cube. This was repeated for each cell of the model. Figure 5c shows
an example of a clustered model. The homogeneous regions are now referred to as
domains. This step reduces the total number of domains by removing isolated groups
of grid cells that can be a few cells wide.

Step 2.2 The flow performance of the clustered model was compared to that of the
parent segmented model. The optimal window size was defined as the one which gave
the closest fit (based on Goodness of Fit) to the optimal segmented model.

Step 2.3 The final Goodness of Fit (E) of the flow performance between the optimal
clustered and base models was then calculated based on the results of numerical
simulations of flow in each model.
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4 Results

Results from the Lower SPE 10 Model at each step of the workflow are first reported to
illustrate application of the workflow and show how the final Goodness of Fit results
were obtained. For the other test cases, only the final Goodness of Fit results are
reported, as they show similar behavior to the Lower SPE 10 Model and the individual
workflow steps were the same.

4.1 Lower SPE 10 Model: Segmentation and Clustering

We first consider the Goodness of Fit for the segmented (but not clustered) Lower
SPE 10 Model for the various fluid properties tested and the inverted five spot well
pattern (inducing primarily radial flow) (Fig. 6a). The solid lines denote the Goodness
of Fit including only ‘global’ measures of well response i.e. production rates and
pressures. The dashed lines denote the Goodness of Fit with both ‘global’ and ‘local’
well responses (water breakthrough time) included.

The results show that, even with only two segments, the ‘global’ Goodness of
Fit for the segmented model (i.e. calculated without including water breakthrough)
is greater than 88%, except for the case with the highest oil/water viscosity ratio
(Fig. 6a). A two segment model captures the contrast between high permeability,
channelized sandstones and low permeability mudstones. However, increasing the
number of segments beyond two further improves the fit and, at 10 segments or more,
the ‘global’ Goodness of Fit for the segmented model is greater than 93%; moreover,
it is insensitive to the chosen oil/water viscosity ratio. Further increasing the number
of segments beyond 10 yields a very slow rate of increase in the fit, tending towards
one as the number of segments approaches the number of cells in the model. Note
that 10 segments corresponds to a very small number of unique values of porosity and
permeability compared to the 660,000 cells in the base model.

The inclusion of water breakthrough to produce a ‘global + local” Goodness of Fit
measure causes a large increase in the mismatch with a small number of segments, but
the mismatch is again small at 10 segments or more (compare solid and dashed lines
in Fig. 6a).

The ‘global” Goodness of Fit for the same test case with the line drive well pattern
(inducing primarily linear flow) shows similar behavior, except that the fit for the two
segment model is lower, especially with the higher oil/water viscosity ratio (Fig. 6b).
Including water breakthrough has a more limited effect on the ‘global 4 local’ Good-
ness of Fit in this case with linear flow than it did with primarily radial flow. However,
at 10 segments or more, the ‘global 4+ local” Goodness of Fit for the segmented model
is again high and identical irrespective of the oil/ water viscosity ratio. Further increas-
ing the number of segments beyond 10 yields a very slow rate of increase in the fit.
The 10-segment model was therefore considered optimal for the Lower SPE 10 Model
and was taken into the clustering step.

The clustering algorithm was applied using a window size of 3 x 3 x 1 twice
sequentially, yielding approximately 2,000 individual domains. The Goodness of Fit
of the clustered models is shown by the triangles in Fig. 6. Clustering causes the
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Fig.6 Goodness of Fit (GOF) as a function of segment number. a Lower SPE 10 Model with the inverted five
spot well configuration; b Lower SPE 10 model with the line drive well configuration; ¢ Upper SPE 10 Model
with the inverted five spot well configuration; d Upper SPE 10 Model with the line drive well configuration; e
H-Field model. Points with lines denote the segmented models without clustering. The different line markers
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breakthrough respectively
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Fig. 7 Well and reservoir responses of the base, segmented and clustered models of the Lower SPE 10
Model and the inverted five spot well configuration with uniform oil and water viscosities. Plots a to d show
oil production rate as a function of time for each producer well. Plots e to h show water production rate as a
function of time for each producer well. Plot i shows the bottom hole pressure for the water injection well.
Plots j to 1 show, respectively, the total reservoir oil production rate, water production rate and cumulative
oil production as a function of time

Goodness of Fit to decrease by a few percent (up to 4%), as confirmed by examination
of the individual well and reservoir responses (Fig. 7). For example, the model with
just 10 segments (and, in Fig. 7, equal oil and water viscosities and the inverted five
spot well pattern) provides a close match to the oil and water rates in each production
well (Fig. 7a to h). Not only are the production rates closely matched, but the water
breakthrough time is also captured in each well. The bottom hole pressure in the
injection well (Fig. 7i) shows very good agreement with the base model. Most of
the discrepancy in a given response occurs at relatively early time (first 400 days, or
20% of simulated production). The 10-segment model also provides a good match to
the reservoir responses of oil and water production rate, and cumulative oil produced
(Fig. 7j to 1).

The key geological heterogeneity that the Lower SPE 10 Model needed to capture
was the connectivity of the high permeability channelized sandbodies (Fig. 8; see also
Fig. 1). The two segment model did reasonably well in this respect, capturing the
high permeability channelized sandstones and low permeability mudstones. However,
the geostatistical method used in the original model to populate permeability within
lithofacies created some connections between channelized sandstones via one or a
few cells in the mudstone that were assigned intermediate permeability values. It
is not clear that these connections are realistic and consistent with the underlying
geologic concept, or are merely an artefact of the geostatistical modelling algorithm.
Nonetheless, increasing the number of segments to 10 preserved these intermediate
permeability connections, yielding very similar connectivity and, therefore, sweep
patterns in the base and 10-segment models (Fig. 8). The clustering step did not
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Fig. 8 Horizontal and vertical sections through the Lower SPE 10 Model showing horizontal permeability
and water saturation at a given timestep during production via the inverted five spot well configuration
with uniform oil and water viscosities. Plots a and b show, respectively, the permeability at a horizontal
section through the base and 10-segment and clustered models. Plots ¢ and d show the water saturation at a
given timestep on the same horizontal section. Plots e and f show the vertical section through the base and
10-segment and clustered models, respectively. Plots g and h show the water saturation at the same vertical
section

significantly modify the permeability distribution. Thus a model with just 10 unique
values of porosity and permeability, grouped into a few thousand domains, was able
to replicate the two-phase flow behavior of a model with 660,000 cells, each of which
contains a different value of porosity and permeability to its neighbor, irrespective of
the well configuration or fluid properties tested.

4.2 Upper SPE 10 Model: Summary of Goodness of Fit Results

The Goodness of Fit results for the same study on the Upper SPE 10 Model show similar
behavior to those of the Lower SPE 10 Model (Fig. 6¢ to d). The ‘global’ Goodness of
Fit for two segments is lower than for the Lower SPE 10 Model, but increases as the
number of segments increases. At 10 segments or more, the ‘global’ Goodness of Fit
for the segmented model is high (> 90) irrespective of the oil/water viscosity ratio or
well configuration. Further increasing the number of segments beyond 10 yields a very
slow rate of increase in the fit. Including water breakthrough in the ‘global 4 local’
Goodness of Fit in this case had a larger effect for the highest viscosity ratio and
the inverted 5 spot well pattern. The ‘global +1local” Goodness of Fit at 20 or more
segments was lower. This was found to be due to a few cells very close to the wells,
and the effect for the line drive well configuration was negligible. Overall, for both
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Fig. 9 Horizontal sections through the Upper SPE 10 Model and the H-Field Model showing horizontal
permeability. Plot a shows the base Upper SPE 10 model; plot b shows the Upper SPE 10 model with 10
segments after clustering. Plot ¢ shows the base H-Field model; plot d shows the H-Field model with 20
segments after clustering

well patterns, the 10-segment model was considered optimal for the Upper SPE 10
Model and was taken into the clustering step.

The clustering algorithm was run with a window size of 6 x 6 x 1 yielding approx-
imately 850 individual domains. The base and final clustered models are shown in
Fig. 9a, b. The Goodness of Fit of the clustered models is shown by the triangles in
Fig. 6. Clustering reduced the Goodness of Fit by a few percent but, similar to the
Lower SPE 10 Model, the decrease was small.

Unlike the Lower SPE Model, the Upper SPE 10 shows no strongly correlated
permeability distribution and there are no clear geological heterogeneities that should
be captured in the model. Thus the two segment model yields a significantly lower
Goodness of Fit for the Upper SPE 10 Model as compared to the Lower SPE 10
Model. However, at 10 segments, the segmented and clustered models again yield a
close match to the base model. A model with just 10 unique values of porosity and
permeability, grouped into hundreds of domains, was able to replicate the two-phase
flow behavior of a model with 462,000 cells, each of which contains a different value
of porosity and permeability to its neighbor, irrespective of the well configuration or
fluid properties tested.

4.3 H-Field Model: Summary of Goodness of Fit Results

We finish by reporting the Goodness of Fit results for the same study on the H-Field
Model (Fig. 6e). Despite the significantly higher complexity of the H-Field, in terms of
geological heterogeneity, number of wells, and multiphase flow, the results are similar
to the synthetic SPE 10 test cases. For both the ‘global” and ‘global +local’ Goodness
of Fit measures, the match for two segments is low, but increases as the number of
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Fig. 10 Goodness of Fit of segmented models without clustering, as a function of segment number for 10
realizations of the H-Field. a ‘Global’ Goodness of Fit excluding water breakthrough; b ‘Global 4-local’
Goodness of Fit including water breakthrough

segments increases. At 20 segments or more, both the ‘global’ and ‘global 4-local’
Goodness of Fit for the segmented model are high. Further increasing the number of
segments beyond 20 yields a very slow rate of increase in the fit. The 20-segment
model was therefore considered optimal for the H-Field Model and was taken into
the clustering step. The model was clustered using three iterations of the algorithm,
with a window size of 5 x 5 x 5, then two with 5 x 5 x 1, yielding approximately
850 individual domains. The H-Field model was more sensitive to clustering than the
synthetic SPE 10 test cases; however, the mismatch was still small.

The H-Field model shown in Fig. 4 is only one geologic realization. Applying the
same statistical description of the petrophysical properties, many more realizations
are possible. Fig. 10 shows the ‘global +local’ Goodness of Fit for 10 realizations
of the H-Field model. While there is significant sensitivity with < 20 segments, the
increase in Goodness of Fit is very slow with 20 or more segments. Thus the observed
behavior is not specific to a single model realisation.

The H-Field model captures many geological heterogeneities, including complex
structure with several fault blocks, and diagenetically modified permeability values
controlled by a multi-stage filling history during initial charging with oil. Perhaps
because of this, more segments and domains were required to reproduce the base
model behavior. Nevertheless, a model with just 20 unique values of porosity and per-
meability, grouped into a few hundred domains, was able to replicate the multiphase,
multicomponent flow behavior of a model with 146,000 cells, each of which contains
a different value of porosity and permeability, to its neighbor.

5 Discussion
5.1 Is Cell-to-Cell Scale Variability Necessary in Reservoir Models?

The results presented here indicate that grid-based reservoir models containing many
unique values of petrophysical properties (of order hundreds-of-thousands in the exam-
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ples tested) varying on a cell-to-cell basis can be collapsed into a much smaller number
of larger but more geometrically complex domains which are internally homogeneous,
irrespective of the reservoir geology, fluid properties or well configuration. Thus, while
it is always possible that testing of further cases may contradict this, the evidence pre-
sented here suggests that cell-to-cell scale variability is not necessary in reservoir
models. We note that the models tested here were of clastic reservoirs. It is well
known that carbonate reservoirs often differ from clastic reservoirs in the type, scale
and geometry of key geologic heterogeneities and how these impact on flow (e.g.
Borgomano et al. 2002; Pranter et al. 2006; Fitch et al. 2014). Nonetheless, as dis-
cussed in the Introduction, the cell-to-cell variability observed in reservoir models is an
artefact of applying pixel-based modelling methods on a grid of arbitrary resolution
and geometry, rather than a consequence of the underlying geologic heterogeneity.
We argue that, irrespective of depositional environment, modelling workflows should
focus on capturing the geologic domains that represent spatially correlated variabil-
ity in petrophysical properties (particularly permeability) in the most realistic and
computationally efficient manner. The correlated variability reflects the underlying
geological heterogeneity that is important to flow.

In the approach adopted here, ‘domain-based’ models were created by segmenting
and clustering existing grid-based models. However, we adopted this approach only to
test the effect of removing cell-to-cell scale variability from grid-based models, and we
do not recommend this workflow for model construction. The important finding here is
that capturing domains that represent spatially correlated variability in petrophysical
properties is key. This finding offers the prospect of alternative modelling workflows
to the grid-based methods used ubiquitously to date.

5.2 Implications for Surface-Based Geologic Modelling

One approach to capture key geologic domains is to model the surfaces that bound
them. Surface-based modelling (or boundary representation) has been suggested as
an alternative to grid-based modelling to capture a wide variety of different geolog-
ical heterogeneity types, including faults (Julio et al. 2015), stratigraphy (Sylvester
et al. 2015), facies and lithological boundaries (Hassanpour et al. 2013; Ruiu et al.
2016), and fractures (Belayneh et al. 2006; Paluszny et al. 2007). Indeed, all geo-
logical heterogeneity that impacts the spatial distribution of petrophysical properties
can be modelled using surfaces (Jackson et al. 2013). Moreover, the surfaces can be
modelled using a parametrized description without reference to a pre-defined grid or
mesh (Graham et al. 2015b; Jacquemyn et al. 2018), significantly increasing compu-
tational efficiency. A mesh is created only when required for numerical calculations
and preserves the surface-based representation of geological heterogeneity (Jackson
et al. 2015). Petrophysical properties in each element of the mesh are inherited from
the parent domain i.e. no further property modelling is required. If significant hetero-
geneity is expected within a domain, additional surfaces can be introduced. Therefore
such models omit cell-to-cell scale variability. The models are not less complex or less
realistic than grid-based models; as we show here, they simply omit variability that
is not important to flow. Indeed, surface-based models can much better capture cor-
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related heterogeneities with complex geometries that are important to flow (Jackson
et al. 2009; Deveugle et al. 2014; Graham et al. 2015b).

5.3 Surface- Versus Grid-Based Models: Capturing Key Geologic
Heterogeneities

In the approach adopted here, we assumed that each conventional, grid-based, base
model yielded the ‘correct’ flow behavior for the corresponding reservoir, and the
removal of cell-to-cell scale variability was tested by comparison against the flow
behavior of the base model. Yet the base models may not have captured important geo-
logical heterogeneities present in the reservoir. For example, the Upper SPE 10 Model
was originally constructed to represent reservoirs deposited in a shallow-marine envi-
ronment. Numerous studies have shown that facies architecture is a key control on flow
in such reservoirs, with facies types corresponding to order-of-magnitude contrasts in
horizontal and vertical permeability (Ringrose et al. 2008; Deveugle et al. 2014). The
thickness and relative proportion of each facies type strongly controls flow, along with
interfingering of facies along inclined surfaces termed clinoforms. Calcite cements are
also a common feature of such reservoirs and are often associated with clinoform sur-
faces (Sech et al. 2009; Jackson et al. 2009). Yet, despite the importance of clinoform
surfaces in controlling the spatial arrangement of key geological heterogeneities, they
are typically neglected in reservoir models because their inclined geometry relative
to reservoir bounding surfaces means they are difficult to represent using grid-based
approaches. There is no evidence that the key heterogeneities described above are
captured in the Upper SPE 10 Model (Fig. 3) and, despite its ubiquitous use in later
studies, it likely provides a poor representation of flow in shallow-marine reservoirs
(White and Barton 1999; Sech et al. 2009; Jackson et al. 2009; Enge and Howell 2010;
Deveugle et al. 2014; Graham et al. 2015b amongst many others).

Figure 11a, b shows a surface-based model of the SPE 10 geology (Jacquemyn et al.
2018). The upper part of the model represents a reservoir deposited in a shallow-marine
environment and corresponds to the Upper SPE 10 Model; the lower part of the model
represents a fluvial reservoir and corresponds to the Lower SPE 10 Model. The surface-
based model was constructed entirely using parametrized surfaces (in this case, Non
Uniform Rational Basis Splines or NURBS) without reference to a pre-defined grid or
mesh. The surfaces have been assembled to create watertight volumes that correspond
to geologic domains. Domains of different facies/lithologies are shown by the different
colors. In the upper part of the model, the domains correspond to different shallow-
marine sandstone facies types; in the lower part of the model, domains corresponding
to channelized sandstones. Domains representing non-reservoir mudstones have not
been visualized, but are present in the model.

The surface-based representation of the Upper SPE 10 geology includes clinoforms
and the shallow marine facies interfinger along these surfaces; the model also includes
patches of calcite cement along clinoform surfaces. Thus, although the model does
not include cell-to-cell variability in petrophysical properties, it includes the key cor-
related heterogeneities observed to impact flow (Jackson et al. 2009; Graham et al.
2015b). Similarly, the surface-based representation of the Lower SPE 10 geology
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Fig. 11 Surface-based model inspired by SPE 10 model 2. a Full model; b Lower, fluvial section; from
below (Jacquemyn et al. 2018)

includes channelized sandbodies of varying width and sinuosity and, although the
model does not include cell-to-cell scale variability, it captures the spatial distribution
and connectivity of the sandbodies, which is the key heterogeneity observed to impact
flow. Such a model can be used as the initial input to new generation simulators that
used adaptive unstructured meshes to optimize computational effort when solving the
governing flow equations (Mostaghimi et al. 2015; Jackson et al. 2015; Gomes et al.
2017b; Salinas et al. 2018).

5.4 Surface-Based Modelling for Complex Structure and Flow Simulation

Surface-based models are also able to capture structural heterogeneity such as recum-
bent folds, intersecting normal faults or listric growth faults (see Jacquemyn et al.
2018). These are often very difficult to represent using conventional pillar grids. Fig-
ure 12 shows a surface-based model of conjugate normal faults offsetting stratigraphic
layers of contrasting permeability. If required, the model can be discretised using tetra-
hedral unstructured meshes. Figure 12d shows an example of fluid flow simulated using
the Imperial College Finite Element Reservoir Simulator (ICFERST; Jackson et al.
2015; Salinas et al. 2017. In this example, the model is initially saturated with oil
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Fig. 12 Surface-based model of a layered reservoir offset by conjugate normal faults. a Side view; b Top
view. ¢ Perspective view. The model is discretised using a coarse unstructured tetrahedral mesh, with under
20,000 elements. Initially saturated with oil and irreducible water. d Water is injected cross the left boundary
with production from the right boundary. All other boundaries are closed. As the displacing water front
propagates through the model, dynamic adaptive mesh optimisation is used to change the geometry of the
mesh. Computational resources are therefore allocated more efficiently around areas of interest (Jacquemyn
et al. 2018)

and irreducible water, and injection of water is simulated through the left boundary,
displacing oil toward the right boundary with all other boundaries closed. Dynamic
adaptive mesh optimisation (Pain et al. 2001) is used to optimize the geometry of the
mesh to a solution field of interest; here, the mesh is optimized to the water saturation
field. High mesh resolution is therefore focused at the saturation front. Ahead and
behind the front, the mesh is kept coarse.

There are a few outstanding issues for surface-based modelling methods. While it is
possible to accurately represent the complex geometries of geology, conditioning these
models to control data, such as well or seismic data, remains a challenge (Bertoncello
et al. 2013). Another challenge is to update surface-based models to better match
observed behavior (history match). These challenges are by no means insurmountable
(e.g. Trani and Graham 2016); however, further work is needed to develop workflows
to condition and history match surface-based models.

6 Conclusions

We show that grid-based reservoir models containing a large number of petrophys-
ical property values that vary on a cell-to-cell basis can be collapsed into a much
smaller number of larger and internally homogeneous but more geometrically com-
plex geologic domains, irrespective of the reservoir geology, fluid properties or well
configurations tested. We conclude from this that cell-to-cell scale variability is not
necessary in reservoir models to capture multiphase flow. Although the geometrically
complex domains can be represented in standard grid-based models, surface-based
reservoir modelling methods are more flexible and better able to capture the complex
geometries of geologic domains in a realistic and computationally efficient manner.
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Numerical solutions to the governing flow equations can be obtained in such models
using adaptive unstructured meshes.
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