31 research outputs found

    Infrared spectroscopy of ions in selected rotational and spin-orbit states

    Get PDF
    \begin{wrapfigure}{r}{0pt} \includegraphics[scale=0.4,angle =-90]{try1.eps} \end{wrapfigure} First results are presented obtained using an experimental setup developed to record IR spectra of rotationally state-selected ions. The method we use is a state-selective version of a method developed by Schlemmer \textit{et al.}~\footnote{Schlemmer \textit{et al.}, J. Chem. Phys. {\bf 117}, 2068 (2002)} to record IR spectra of ions. Ions are produced in specific rotational levels using mass-analysed threshold ionisation (MATI) spectroscopy combined with single-photon excitation of neutral molecules in supersonic expansions with a vacuum-ultraviolet laser. The ions generated by pulsed-field ionisation of Rydberg states of high principal quantum number (\textit{n}~\approx~200) are extracted toward an octupole ion guide containing a neutral target gas. Prior to entering the octupole the ions are excited by an IR laser. The target gas is chosen so that only excited ions react to form product ions. These product ions are detected mass selectively as function of the IR laser wavenumber. To illustrate this method, we present IR spectra of C2_2H2+_2^+ in selected rotational levels of the 2Π3/2^2\Pi_{3/2} and 2Π1/2^2\Pi_{1/2} spin-orbit components of the electronic ground state

    Electronic spectroscopy of 1-cyanonaphthalene cation for astrochemical consideration

    Get PDF
    Context. Polycyclic aromatic hydrocarbons (PAHs) are believed to be the carriers of the aromatic infrared bands and have been proposed as candidates to explain other astronomical phenomena such as diffuse interstellar bands (DIBs). The first aromatic structures possessing more than one ring, 1- and 2-cyanonaphthalene (CNN), were recently detected by rotational spectroscopy in the dense molecular cloud TMC-1. Laboratory investigations have indicated that due to fast and efficient relaxation through recurrent fluorescence (RF), CNN+ may be photostable in the harsh conditions of the lower density, more diffuse regions of the interstellar medium (ISM) exposed to ultraviolet (UV) radiation. As a result, it has been suggested that the widely held belief that small PAHs present in these regions are dissociated may need to be revisited. If 1-CNN+ is able to survive in the diffuse ISM it may contribute to the population of 1-CNN observed in TMC-1. To investigate the abundance of 1-CNN+ in diffuse clouds, laboratory spectroscopy is required. The present work concerns the electronic spectroscopy of 1-CNN+ in absorption and the search for its spectroscopic fingerprints in diffuse clouds. Aims. The aim is to obtain laboratory data on the electronic transitions of gas-phase 1-CNN+ under conditions appropriate for comparison with DIBs and assess abundance in diffuse clouds. Methods. Spectroscopic experiments are carried out using a cryogenic ion trapping apparatus in which gas-phase 1-CNN+ is cooled to temperatures below 10 K through buffer gas cooling. Calculations are carried out using time-dependent density-functional theory. Results. Experimental and theoretical data on the D2 ← D0 and D3 ← D0 electronic transitions of 1-CNN+ are reported. The former transition has a calculated oscillator strength of f = 0.075 and possesses a pattern dominated by its origin band. The origin band is located at 7343 Å and has a full width at half maximum of 28 Å. In observational data, this falls in a region polluted by telluric water lines, hindering assessment of its abundance. Conclusions. Space-based observations are required to search for the spectroscopic signatures of 1-CNN+ and evaluate the hypothesis that this small aromatic system, stabilised by RF, may be able to survive in regions of the ISM exposed to UV photons

    Photo- and Collision-Induced Isomerization of a Charge-Tagged Norbornadiene–Quadricyclane System

    Get PDF
    Molecular photoswitches based on the norbornadiene-quadricylane (NBD-QC) couple have been proposed as key elements of molecular solar thermal energy storage schemes. To characterize the intrinsic properties of such systems, reversible isomerization of a charge-tagged NBD-QC carboxylate couple is investigated in a tandem ion mobility mass spectrometer, using light to induce intramolecular [2 + 2] cycloaddition of NBD carboxylate to form the QC carboxylate and driving the back reaction with molecular collisions. The NBD carboxylate photoisomerization action spectrum recorded by monitoring the QC carboxylate photoisomer extends from 290 to 360 nm with a maximum at 315 nm, and in the longer wavelength region resembles the NBD carboxylate absorption spectrum recorded in solution. Key structural and photochemical properties of the NBD-QC carboxylate system, including the gas-phase absorption spectrum and the energy storage capacity, are determined through computational studies using density functional theory

    Searches for bridged bicyclic molecules in space-norbornadiene and its cyano derivatives

    Get PDF
    The norbornadiene (NBD) molecule, C7H8, owes its fame to its remarkable photoswitching properties that are promising for molecular solar-thermal energy storage systems. Besides this photochemical interest, NBD is a rather unreactive species within astrophysical conditions and it should exhibit high photostability, properties that might also position this molecule as an important constituent of the interstellar medium (ISM)-especially in environments that are well shielded from short-wavelength radiation, such as dense molecular clouds. It is thus conceivable that, once formed, NBD can survive in dense molecular clouds and act as a carbon sink. Following the recent interstellar detections of large hydrocarbons, including several cyano-containing ones, in the dense molecular cloud TMC-1, it is thus logical to consider searching for NBD-which presents a shallow but non-zero permanent electric dipole moment (0.06 D)-as well as for its mono- and dicyano-substituted compounds, referred to as CN-NBD and DCN-NBD, respectively. The pure rotational spectra of NBD, CN-NBD, and DCN-NBD have been measured at 300 K in the 75-110 GHz range using a chirped-pulse Fourier-transform millimetre-wave spectrometer. Of the three species, only NBD was previously studied at high resolution in the microwave domain. From the present measurements, the derived spectroscopic constants enable prediction of the spectra of all three species at various rotational temperatures (up to 300 K) in the spectral range mapped at high resolution by current radio observatories. Unsuccessful searches for these molecules were conducted toward TMC-1 using the QUIJOTE survey, carried out at the Yebes telescope, allowing derivation of the upper limits to the column densities of 1.6 x 10(14) cm(-2), 4.9 x 10(10) cm(-2), and 2.9 x 10(10) cm(-2) for NBD, CN-NBD, and DCN-NBD, respectively. Using CN-NBD and cyano-indene as proxies for the corresponding bare hydrocarbons, this indicates that-if present in TMC-1-NBD would be at least four times less abundant than indene

    Photoelectron angular distributions from rotationally resolved autoionizing states of N2

    Get PDF
    The single-photon, photoelectron-photoion coincidence spectrum of N2 has been recorded at high (~1.5 cm–1 ) resolution in the region between the N2+ X 2Σg+, v+ = 0 and 1 ionization thresholds by using a double-imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N2+ X 2Σg+ ground state, and electronically autoionizing states converging to the N2+ A 2Π and B 2Σu+ states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. A simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, β, and the results are in reasonably good agreement with experiment

    Photoelectron angular distributions from rotationally resolved autoionizing states of N2

    Get PDF
    The single-photon, photoelectron-photoion coincidence spectrum of N2 has been recorded at high (~1.5 cm–1 ) resolution in the region between the N2+ X 2Σg+, v+ = 0 and 1 ionization thresholds by using a double-imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N2+ X 2Σg+ ground state, and electronically autoionizing states converging to the N2+ A 2Π and B 2Σu+ states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. A simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, β, and the results are in reasonably good agreement with experiment

    Electronic spectra of positively charged carbon clusters - C2n+ (n=6-14)

    Get PDF
    Electronic spectra are measured for mass-selected C+2( = 6–14) clusters over the visible and near-infrared spectral range through resonance enhanced photodissociation of clusters tagged with N2 molecules in a cryogenic ion trap. The carbon cluster cations are generated through laser ablation of a graphite disk and can be selected according to their collision cross section with He buffer gas and their mass prior to being trapped and spectroscopically probed. The data suggest that the C+2( = 6–14) clusters have monocyclic structures with bicyclic structures becoming more prevalent for C+22 and larger clusters. The C+2 electronic spectra are dominated by an origin transition that shifts linearly to a longer wavelength with the number of carbon atoms and associated progressions involving excitation of ring deformation vibrational modes. Bands for C+12, C+16, C+20, C+24, and C+28 are relatively broad, possibly due to rapid non-radiative decay from the excited state, whereas bands for C+14, C+18, C+22, and C+26 are narrower, consistent with slower non-radiative deactivation

    An ion mobility mass spectrometer coupled with a cryogenic ion trap for recording electronic spectra of charged, isomer-selected clusters

    Get PDF
    Infrared and electronic spectra are indispensable for understanding the structural and energetic properties of charged molecules and clusters in the gas phase. However, the presence of isomers can potentially complicate the interpretation of spectra, even if the target molecules or clusters are mass-selected beforehand. Here, we describe an instrument for spectroscopically characterizing charged molecular clusters that have been selected according to both their isomeric form and their mass-to-charge ratio. Cluster ions generated by laser ablation of a solid sample are selected according to their collision cross sections with helium buffer gas using a drift tube ion mobility spectrometer and their mass-to-charge ratio using a quadrupole mass filter. The mobility- and mass-selected target ions are introduced into a cryogenically cooled, three-dimensional quadrupole ion trap where they are thermalized through inelastic collisions with an inert buffer gas (He or He/N2 mixture). Spectra of the molecular ions are obtained by tagging them with inert atoms or molecules (Ne and N2), which are dislodged following resonant excitation of an electronic transition, or by photodissociating the cluster itself following absorption of one or more photons. An electronic spectrum is generated by monitoring the charged photofragment yield as a function of wavelength. The capacity of the instrument is illustrated with the resonance-enhanced photodissociation action spectra of carbon clusters (Cn+) and polyacetylene cations (HC2nH+) that have been selected according to the mass-to-charge ratio and collision cross section with He buffer gas and of mass-selected Au2+ and Au2Ag+ clusters
    corecore