12,962 research outputs found

    Comment on "Accelerated Detectors and Temperature in (Anti) de Sitter Spaces"

    Get PDF
    It is shown how the results of Deser and Levin on the response of accelerated detectors in anti-de Sitter space can be understood from the same general perspective as other thermality results in spacetimes with bifurcate Killing horizons.Comment: 5 pages, LaTe

    Mechanics of universal horizons

    Full text link
    Modified gravity models such as Ho\v{r}ava-Lifshitz gravity or Einstein-{\ae}ther theory violate local Lorentz invariance and therefore destroy the notion of a universal light cone. Despite this, in the infrared limit both models above possess static, spherically symmetric solutions with "universal horizons" - hypersurfaces that are causal boundaries between an interior region and asymptotic spatial infinity. In other words, there still exist black hole solutions. We construct a Smarr formula (the relationship between the total energy of the spacetime and the area of the horizon) for such a horizon in Einstein-{\ae}ther theory. We further show that a slightly modified first law of black hole mechanics still holds with the relevant area now a cross-section of the universal horizon. We construct new analytic solutions for certain Einstein-{\ae}ther Lagrangians and illustrate how our results work in these exact cases. Our results suggest that holography may be extended to these theories despite the very different causal structure as long as the universal horizon remains the unique causal boundary when matter fields are added.Comment: Minor clarifications. References update

    General covariance, and supersymmetry without supersymmetry

    Get PDF
    An unusual four-dimensional generally covariant and supersymmetric SU(2) gauge theory is described. The theory has propagating degrees of freedom, and is invariant under a local (left-handed) chiral supersymmetry, which is half the supersymmetry of supergravity. The Hamiltonian 3+1 decomposition of the theory reveals the remarkable feature that the local supersymmetry is a consequence of Yang-Mills symmetry, in a manner reminiscent of how general coordinate invariance in Chern-Simons theory is a consequence of Yang-Mills symmetry. It is possible to write down an infinite number of conserved currents, which strongly suggests that the theory is classically integrable. A possible scheme for non-perturbative quantization is outlined. This utilizes ideas that have been developed and applied recently to the problem of quantizing gravity.Comment: 17 pages, RevTeX, two minor errors correcte

    On the effects of the Dvali-Gabadadze-Porrati braneworld gravity on the orbital motion of a test particle

    Full text link
    In this paper we explicitly work out the secular perturbations induced on all the Keplerian orbital elements of a test body to order O(e^2) in the eccentricity e by the weak-field long-range modifications of the usual Newton-Einstein gravity due to the Dvali-Gabadadze-Porrati (DGP) braneworld model. The Gauss perturbative scheme is used. It turns out that the argument of pericentre and the mean anomaly are affected by secular rates which are independent of the semimajor axis of the orbit of the test particle. The first nonvaishing eccentricity-dependent corrections are of order O(e^2). For circular orbits the Lue-Starkman (LS) effect on the pericentre is obtained. Some observational consequences are discussed for the Solar System planetary mean longitudes lambda which would undergo a 1.2\cdot 10^-3 arcseconds per century braneworld secular precession. According to recent data analysis over 92 years for the EPM2004 ephemerides, the 1-sigma formal accuracy in determining the Martian mean longitude amounts to 3\cdot 10^-3 milliarcseconds, while the braneworld effect over the same time span would be 1.159 milliarcseconds. The major limiting factor is the 2.6\cdot 10^-3 arcseconds per century systematic error due to the mismodelling in the Keplerian mean motion of Mars. A suitable linear combination of the mean longitudes of Mars and Venus may overcome this problem. The formal, 1-sigma obtainable observational accuracy would be \sim 7%. The systematic error due to the present-day uncertainties in the solar quadrupole mass moment, the Keplerian mean motions, the general relativistic Schwarzschild field and the asteroid ring would amount to some tens of percent.Comment: LaTex2e, 23 pages, 5 tables, 1 figure, 37 references. Second-order corrections in eccentricity explicitly added. Typos corrected. References update

    Injection mould tool manufacture in less than five days

    Get PDF
    Using novel rapid prototyping (RP) technology combined with established electroforming tehniques and electro-discharge machining (EDM), injection mould tools have been produced in days rather than weeks. These moulds are manufactured in new silicon-aluminium alloys developed by Osprey Metals, containing 50% or more silicon. The synthesis of these processes shows great potential for use in the rapid tooling sector

    Reductions for the Stable Set Problem

    Get PDF
    One approach to finding a maximum stable set (MSS) in a graph is to try to reduce the size of the problem by transforming the problem into an equivalent problem on a smaller graph. This paper introduces several new reductions for the MSS problem, extends several well-known reductions to the maximum weight stable set (MWSS) problem, demonstrates how reductions for the generalized stable set problem can be used in conjunction with probing to produce powerful new reductions for both the MSS and MWSS problems, and shows how hypergraphs can be used to expand the capabilities of clique projections. The effectiveness of these new reduction techniques are illustrated on the DIMACS benchmark graphs, planar graphs, and a set of challenging MSS problems arising from Steiner Triple Systems

    Anisotropic Lifshitz Point at O(ϵL2)O(\epsilon_L^2)

    Full text link
    We present the critical exponents νL2\nu_{L2}, ηL2\eta_{L2} and γL\gamma_{L} for an mm-axial Lifshitz point at second order in an ϵL\epsilon_{L} expansion. We introduced a constraint involving the loop momenta along the mm-dimensional subspace in order to perform two- and three-loop integrals. The results are valid in the range 0≤m<d0 \leq m < d. The case m=0m=0 corresponds to the usual Ising-like critical behavior.Comment: 10 pages, Revte

    Causal structure of acoustic spacetimes

    Get PDF
    The so-called ``analogue models of general relativity'' provide a number of specific physical systems, well outside the traditional realm of general relativity, that nevertheless are well-described by the differential geometry of curved spacetime. Specifically, the propagation of acoustic disturbances in moving fluids are described by ``effective metrics'' that carry with them notions of ``causal structure'' as determined by an exchange of sound signals. These acoustic causal structures serve as specific examples of what can be done in the presence of a Lorentzian metric without having recourse to the Einstein equations of general relativity. (After all, the underlying fluid mechanics is governed by the equations of traditional hydrodynamics, not by the Einstein equations.) In this article we take a careful look at what can be said about the causal structure of acoustic spacetimes, focusing on those containing sonic points or horizons, both with a view to seeing what is different from standard general relativity, and to seeing what the similarities might be.Comment: 51 pages, 39 figures (23 colour figures, colour used to convey physics information.) V2: Two references added, some additional discussion of maximal analytic extension, plus minor cosmetic change
    • …
    corecore