2,721 research outputs found

    Development of a 425 Foot Diameter Passive Communication Satellite with Self Erecting Properties Monthly Progress Report No. 21m, Feb. 1966

    Get PDF
    Processing equipment modifications and product development of glass fibers for passive communication satellit

    Development of a 425-foot diameter passive communications satellite with self erecting properties Final report

    Get PDF
    Materials development for 425 foot diameter passive communications satellite with self erecting propertie

    Development of a 425 foot diameter passive communication satellite with self-erecting properties Quarterly progress report no. 9

    Get PDF
    Flexure rigidity and tensile strength of Dacron- glass yarn and fiberglas

    Experimental evidence for chiral melting of the Ge(113) and Si(113) 3×1 surface phases

    Get PDF
    Results of a spot-profile-analysis low-energy-electron-diffraction study of the 3×1 order-disorder phase transition of the Ge(113) and Si(113) surfaces are reported. For Ge(113) agreement with predictions for chiral melting with isotropic scaling is found. For Si(113) we compare our findings to those of other LEED and x-ray-scattering studies

    Hopping of the Photohole during Photoemission from Physisorbed N<sub>2</sub>: The Influence of Band Formation on Vibrational Excitation

    Get PDF
    N2 physisorbed on top of a Xe spacer layer on Ag(111) and Pd(111) has been studied by angle-resolved and polarization-dependent UV photoemission. The N2 1Ï€u valence level exhibits a vibrational fine structure due to two multiplets corresponding to the ionic (N+2) and neutral (N2) states. The neutral-state multiplet is explained through hopping of the photohole during photoemission. We show that its intensity is stronger for emission from the in-plane component of 1Ï€u, than for the perpendicular one. This is due to a larger lateral overlap in the former case, as concluded by the observed band formation

    Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean

    No full text
    International audienceUsing the Swedish icebreaker Oden as a platform, continuous measurements of airborne mercury (gaseous elemental mercury (Hg0), divalent gaseous mercury species HgIIX2(g) (acronym RGM) and mercury attached to particles (PHg)) and some long-lived trace gases (carbon monoxide CO and ozone O3) were performed over the North Atlantic and the Arctic Ocean. The measurements were performed for nearly three months (July-September 2005) during the Beringia 2005 expedition (from Göteborg, Sweden via the proper Northwest Passage to the Beringia region Alaska - Chukchi Penninsula - Wrangel Island and in-turn via a north-polar transect to Longyearbyen, Spitsbergen). The Beringia 2005 expedition was the first time that these species have been measured during summer over the Arctic Ocean going from 60° to 90° N. During the North Atlantic transect, concentration levels of Hg0, CO and O3 were measured comparable to typical levels for the ambient mid-hemispheric average. However, a rapid increase of Hg0 in air and surface water was observed when entering the ice-covered waters of the Canadian Arctic archipelago. Large parts of the measured waters were supersaturated with respect to Hg0, reflecting a strong disequilibrium. Heading through the sea ice of the Arctic Ocean, a fraction of the strong Hg0 pulse in the water was transferred with some time-delay into the air samples collected ~20 m above sea level. Several episodes of elevated Hg0 in air were encountered along the sea ice route with higher mean concentration (1.81±0.43 ng m−3) compared to the marine boundary layer over ice-free Arctic oceanic waters (1.55±0.21 ng m−3). In addition, the bulk of the variance in the temporal series of Hg0 concentrations was observed during July. The Oden Hg0 observations compare in this aspect very favourably with those at the coastal station Alert. Atmospheric boundary layer O3 mixing ratios decreased when initially sailing northward. In the Arctic, an O3 minimum around 15-20 ppbV was observed during summer (July-August). Alongside the polar transect during the beginning of autumn, a steady trend of increasing O3 mixing ratios was measured returning to initial levels of the expedition (>30 ppbV). Ambient CO was fairly stable (84±12 ppbV) during the expedition. However, from the Beaufort Sea and moving onwards steadily increasing CO mixing ratios were observed (0.3 ppbV day−1). On a comparison with coeval archived CO and O3 data from the Arctic coastal strip monitoring sites Barrow and Alert, the observations from Oden indicate these species to be homogeneously distributed over the Arctic Ocean. Neither correlated low ozone and Hg0 events nor elevated concentrations of RGM and PHg were at any extent sampled, suggesting that atmospheric mercury deposition to the Arctic basin is low during the Polar summer and autumn

    Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations

    Get PDF
    We applied a Regional Climate Model (RCM) to simulate precipitation and snow cover over the Himalaya, between March 2000 and December 2002. Due to its higher resolution, our model simulates a more realistic spatial variability of wind and precipitation than those of the reanalysis of the European Centre of Medium range Weather Forecast (ECMWF) used as lateral boundaries. In this region, we found very large discrepancies between the estimations of precipitation provided by reanalysis, rain gauges networks, satellite observations, and our RCM simulation. Our model clearly underestimates precipitation at the foothills of the Himalaya and in its eastern part. However, our simulation provides a first estimation of liquid and solid precipitation in high altitude areas, where satellite and rain gauge networks are not very reliable. During the two years of simulation, our model resembles the snow cover extent and duration quite accurately in these areas. Both snow accumulation and snow cover duration differ widely along the Himalaya: snowfall can occur during the whole year in western Himalaya, due to both summer monsoon and mid-latitude low pressure systems bringing moisture into this region. In Central Himalaya and on the Tibetan Plateau, a much more marked dry season occurs from October to March. Snow cover does not have a pronounced seasonal cycle in these regions, since it depends both on the quite variable duration of the monsoon and on the rare but possible occurrence of snowfall during the extra-monsoon period
    • …
    corecore