
Purdue University
Purdue e-Pubs
International Refrigeration and Air Conditioning
Conference School of Mechanical Engineering

2006

A Numerical Model for Condensate Drops and
Bridges Retained on the Air-Side Surface of Heat
Exchangers
Yanping Xia
University of Illinois at Urbana-Champaign

Andrew W. Sommers
University of Illinois at Urbana-Champaign

Anthony M. Jacobi
University of Illinois at Urbana-Champaign

Follow this and additional works at: http://docs.lib.purdue.edu/iracc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Xia, Yanping; Sommers, Andrew W.; and Jacobi, Anthony M., "A Numerical Model for Condensate Drops and Bridges Retained on the
Air-Side Surface of Heat Exchangers" (2006). International Refrigeration and Air Conditioning Conference. Paper 793.
http://docs.lib.purdue.edu/iracc/793

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

https://core.ac.uk/display/4955285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Firacc%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Firacc%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


 
R039, Page 1 

 
A Numerical Model for Condensate Drops and Bridges Retained on the Air-

Side Surface of Heat Exchangers 
 

Yanping XIA1, Andrew D. SOMMERS2, Anthony M. JACOBI3,* 
 

Department of Mechanical and Industrial Engineering, University of Illinois, 
Urbana, IL, USA 

1Fax: (217) 244-6534, Phone: (217) 333-2328, E-mail: xia@uiuc.edu  
2Fax: (217) 244-6534, Phone: (217) 244-0778, E-mail: asommers@uiuc.edu 

3Fax: (217) 244-6534, Phone: (217) 649-3162, E-mail: a-jacobi@uiuc.edu 
 

*Indicate Corresponding Author 
 
 

ABSTRACT 
 
A model is developed to predict the shape of a drop or condensate bridge by numerically solving the Young-Laplace 
equation which governs the shape of the liquid-vapor interface, subject to a prescribed shape of the base contour and 
variation of the contact angle along the base contour. The model is successful in predicting the shapes and volumes 
of condensate elements on surfaces with widely varying hydrophilicity. In addition to its utility in predicting the 
volume (or mass) of condensate retained on fin surfaces as drops or bridges, this model can be used to study the 
effects of hydrophilicity on inter-fin or inter-louver condensate bridging.  
 

1. INTRODUCTION 
 
In a broad range of air-cooling applications, water retention on the air-side surface of heat exchangers is problematic, 
because it can reduce the air-side heat transfer coefficient, increase core pressure drop, and provide a site for 
biological activity. In refrigeration systems, the accumulation of frost on the heat exchanger requires periodic 
defrosting and attendant energy expenditure. When water is retained on these surfaces following the defrost cycle, 
ice is more readily formed in the subsequent cooling period, and such ice can lead to shorter operation times 
between defrost cycles. Understanding the shape and size of bridges and droplets is the key to understanding the 
mechanisms of droplet retention on a surface. The ability then to model these condensate elements accurately is 
imperative to designing a better heat transfer surface. Much work has already been done, both analytically and 
numerically, to model these structures on surfaces so only the most germane work will be presented here.  
 
Dussan V and Chow (1983) studied static droplet shapes at critical conditions on an inclined surface for a drop 
contact line with straight-line segments on the sides. In this view, the droplet was assumed to be elongated and 
parallel-sided. This analysis was valid only in the limit of small contact angle, and Dussan V (1985) later extended 
this work to allow for larger contact angles. The model provided closed-form expressions for the maximum volume, 
speed, and wetted area of a droplet on a surface of inclination, α, but it required knowledge of the advancing and 
receding contact angles, θA and θR, as well as the slope of the contact angle with respect to the speed of the contact 
line, κR and κA. The most limiting restriction of this analysis was its assumption of small contact angle hysteresis. 
Dussan V (1987) later included the effects imposed by the motion of the surrounding fluid, but again the analysis 
was limited to a droplet with small contact angle hysteresis.  
 
Briscoe and Galvin (1991) studied the critical volume of sessile and pendant droplets and found that the critical 
surface inclination angle, αc, scaled with V-2/3 for sessile droplets where V equals the volume of the droplet at 
incipient motion. They compared their data with the prediction of maximum volume given by Dussan V (1985) and 
reported reasonable agreement.  
 
In a numerical study involving free energy minimization of fixed-volume droplets on a vertical surface, Milinazzo 
and Shinbrot (1988) sought to disprove the hypotheses that the wetted area of a droplet remains unchanged as the 
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Bond number increases from zero and that a bifurcation instability can occur suddenly. They found instead that the 
contact angle hysteresis increases with Bond number until either θA goes to π or θR goes to zero.  
 
In a finite element solution of the Young-Laplace (capillarity) equation, Brown, et al. (1980) were able to solve for 
the shape of droplets on various surfaces of inclination. Their analysis did acknowledge the variation of the contact 
angle around the base contour, but it only considered the case of a circular base contour and a fixed contact line and 
predicted the horizontal contact angle, θH, to be intermediately located between the maximum and minimum contact 
angles of the drop, a behavior counter to experimental observations.    
 
The two aforementioned numerical investigations along with an earlier one by Larkin (1967), who solved the 
capillarity equation using a finite difference technique, found the horizontal contact angle to lie somewhere between 
the advancing and receding contact angles. This finding, however, stands in contradiction to experimental work by 
MacDougall and Ockrent (1942) who reported the horizontal contact angle to be almost equal to the advancing 
contact angle.  
 
Extrand and Kumagai (1995) studied contact angle hysteresis, droplet shape, and the retentive force for water and 
ethylene glycol droplets at the critical condition on polymer and silicon surfaces using a tiltable plane. They found 
that surfaces with large contact angle hysteresis produce more elongated drops. Similarly, the retentive force was 
found to increase with the elongation of the droplet.  
 
In a numerical study of droplets at the critical condition, Dimitrakopoulos and Higdon (1999) solved for the droplet 
configuration that produced minimum contact angle hysteresis (i.e. θA -θR) for a specified advancing angle θA and 
Bond number. They equated the pressure contributions from gravity and surface tension at the liquid-vapor interface 
and set no requirements on base contour of the droplet. They found the droplet shape was elongated in the direction 
perpendicular to the gravitational force, a result inconsistent with experimentation.  
 
In two recent reports by El Sherbini and Jacobi (2004), droplet shapes were studied experimentally. The droplet 
shape was approximated using a ‘two-circle method’ in which the droplet profile is fitted with two circles sharing a 
common tangent at the apex of the droplet. The volume was then calculated by integrating the profile around the 
circumference of the base. This method was found to accurately predict the volume of droplets, knowing only the 
contact angle and shape of the three-phase contact line. This method, however, was intended only for conventional 
surfaces of homogeneous roughness.  
 
Fan and Wang (2003) performed a stability analysis of the liquid-bridging force between two surfaces. They found 
that solutions describing the equilibrium shape of bridges become physically unfeasible as the liquid volume 
approaches zero. Their analysis, performed by perturbing various equilibrium solutions and examining the change in 
system free energy, revealed that a liquid bridge may become unstable under certain circumstances. Fan and Wang 
attributed this phenomenon to a bridge breaking into smaller droplets as its volume decreases. Their analysis, 
however, was limited to the case of two-dimensional axial symmetric contact (i.e. liquid bridging between a solid 
sphere and flat surface) and two-dimensional plane strain contact (i.e. liquid bridging between a long cylinder and 
flat surface).  
   
In a numerical paper on fluid bridges, Dimitrakopoulos and Higdon (2003) studied the specific conditions for 
displacement of three-dimensional bridges from solid boundaries in a pressure-driven Stokes flow. The bridges were 
assumed to be symmetric about their midplane, but fore-aft asymmetry was permitted due to deformation in the flow 
direction. The contact line of the bridge was then optimized to resist the largest flow rate while still adhering to the 
surfaces. The critical flow rate was found to be sensitive to the viscosity ratio of the bridge and was strongly affected 
by the plate spacing. 
  
The technical literature is indeed replete with articles aimed at modeling droplets; however, only a very small subset 
of that research has attempted to model droplets and bridges simultaneously. Furthermore, most of these earlier 
works have had constraining limitations (i.e. small contact angle hysteresis, unrealistic base contour shapes, unusual 
azimuthal contact angle variations, etc.). The authors are aware of only a few papers that have modeled and 
compared the three-dimensional nature of condensate elements both numerically and experimentally.  
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In this paper, a numerical model to predict the shape of a drop or condensate bridge will be described. The predicted 
volume and shape will be compared to the experimental data and images condensate elements on surfaces with 
different hydrophilicities. A generally applicable model for predicting the volume (or mass) of condensate retained 
on fin surfaces as drops or bridges can be used to study the effects of hydrophilicity on inter-fin or inter-louver 
condensate bridging. 
 

2. PROBLEM DESCRIPTION AND EXPERIMENTAL METHOD 
 
The physical situations of interest, a droplet on a vertical surface and a bridge between two vertical surfaces, are 
shown in Figure 1(a) and 1(b). Cylindrical coordinate system is adopted: z-direction is vertical to the surface(s); in 
the case of a droplet, the origin is the projection on the vertical surface of the point on the droplet surface that has 
the largest z-coordinate (it is chosen in such a way to ensure for each pair of φ and r, there is only one z value on the 
droplet surface); in the case of a bridge, the origin is chosen to provide r(φ=0°)=r(φ=180°)=L; and the azimuthal 
angle φ equals zero when r-direction parallels the direction of gravity. When modeling a bridge, only half of the 
body is considered due to the symmetry according to the center plane. 

r
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r
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z
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2w
2wc

2L

2y0

 
(a)       (b) 

Figure 1: Schematics of a droplet on a vertical surface (a) and a bridge between two vertical surfaces (b). 
 
The apparatus used to study drop shapes is described in details in ElSherbini and Jacobi (2004). The drop to be 
examined rested on the test surface, which was attached to a fixed plate. A camera and a light source were connected 
to an arm that rotated around the drop. The fixed plate and rotating arm were attached to a larger plate which can be 
tilted to different angles of inclination. Although the study in this work was conducted with vertical surface(s), it can 
be easily extended to surface(s) at different inclination angles. A digital camera with a 6:1 macro close-up lens was 
used to capture images of the droplets for future software processing. A xenon light was used at an angle of 180° 
from the camera, illuminating around the drop profile. The droplets studied in this work were water droplets, and 
were studied on a fixed plate inside a vaportight, transparent box that was saturated with water vapor to reduce the 
evaporation rate. Tests were conducted to verify that refraction through the box did not affect the recorded images.  
 
A similar apparatus was developed to test bridge shapes. It consisted of two surfaces with controllable distance 
between them to simulate variable fin spacing. Both of the surfaces were inside a box to reduce the evaporation rate. 
Images of bridge profiles can be recorded at different azimuthal angles, similar to drops. The dimensions of bridge 
contours can be determined from locations of the edges of profiles taken at different azimuthal angles.  
 
The droplet or bridge was injected onto the test surface(s) from a micro-syringe, which provided the volume 
measurement with an accuracy of ±0.2 mm3. 

 
3. NUMERICAL VOLUME PREDICTION MODEL 

 
The Young-Laplace equation may be written for any point on the liquid-vapor interface:  
 
 P Kγ∆ = , (1) 
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where ∆P is the pressure difference across the interface, γ is the liquid surface tension, and K is the mean curvature. 
The pressure in equation (1) may be obtained from the hydrostatic pressure, 
 

 1 cosP c r cφ∆ = + , (2) 
where c1= ∆ρg (∆ρ is the density difference across the interface and g is the acceleration of gravity), and c2=∆ P0, 
which is the pressure difference at the origin, and equals ∆ρgr(φ=180°, z=0). The surface of a droplet (or bridge) can 
be expressed as a function r=r(φ, z). Let the subscripts ‘φ’ and ‘z’ denote partial derivatives with respect to φ and z, 
respectively. The mean curvature at any point on the surface of the droplet (or bridge) can be expressed as:  
 

 
( ) ( )
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The basic idea of the volume prediction model is to numerically solve the Young-Laplace equation, that is, the 
partial differential equation for r(φ, z) resulted after substituting Eqs. (2) and (3) into (1). The PDE is solved under 
the boundary conditions including the shape of the base line and the contact angles along the base line. The 
boundary conditions are determined based on the observation of images captured using the digital camera at 
different azimuthal angles. 
 
Note that at φ=0° and φ=180°, rφ=0. And rφφ equals to zero for the degenerate case. Thus Eq. (3) can be reduced to 
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Substitute Eqs. (4) and (2) (with φ=0° and φ=180°) into Eq. (1), we get a differential equation for the profile at φ=0° 
and φ=180°,  
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with boundary conditions 
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Integrating Eq. (5) and rearranging, we have 
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, (8) 

where c3 and c5 are constants and are determined using boundary conditions (6) and (7) for droplets and bridges 
respectively.  Then Eq. (8) is solved numerically using finite-difference method, and the profiles for φ=0° and 
φ=180° are determined. For the profiles at other azimuthal angles, an initial guessed profile is obtained by assuming 
rφ=0 and rφφ=0. Then starting from the contact line toward larger z-coordinate, the guessed profile is used to 
calculate the partial derivatives in Eq. (3) except for rzz, and the r-coordinate at a higher z-coordinate is updated 
using rzz. This process continues until convergence, and the coordinates of each point on the liquid-vapor interface 
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are determined. Finally, the volume of the condensate element is calculate with 

 
( ),( )
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= ∆∑∑ ∑ r z∆ ∆ . (9) 

 
4. RESULTS 

 
The numerical results for droplets and bridges on three different surfaces will be shown. Table 1 lists the 
measurement of some critical geometries, contact angles and the volumes of these droplets and bridges. In 
calculating the numerical results, the boundary conditions were given such that the azimuthal variation of the contact 
angle around the contact line followed a third-order polynomial, and the base contour was assumed to be elliptical 
and continuous, as reported in ElSherbini and Jacobi (2004) for droplets. Figure 2 shows the variation of contact 
angle with azimuthal angle for a bridge on surface B. The contact angle can be fit by a third-degree polynomial of 
the azimuthal angle, with a coefficient of determination, R2, of 0.99. Therefore, a third-order polynomial relation as 
proposed by ElSherbini and Jacobi was also used for bridges. 
 

Table 1: Geometry, contact angle, and volume measurements 
 

 Volume, 
V (mm3) 

Contact 
angle, θ1 

(°) 

Contact 
angle, θ2 

(°) 

Contact line 
major axis, L 

(mm) 

Contact line 
minor axis, w 

(mm) 

Bridge 
center width, 

wc (mm) 

Half surface 
distance, y0 

(mm) 
2.0 86 68 1.0 1.0 N/A N/A 
4.0 86 59 1.5 1.3 N/A N/A 
6.0 87 57 1.7 1.5 N/A N/A 

Droplets 
on surface 

A  
8.0 97 56 1.7 1.6 N/A N/A 
2.8 35 22 1.2 1.1 0.5 0.76 
7.0 40 23 1.4 1.5 0.8 1.1 

Bridges 
on surface 

B 10.0 77 54 1.4 1.7 1.3 0.86 
5.0 89 77 1.1 1.3 1.4 0.59 
9.0 91 70 1.5 1.5 1.4 0.67 

Bridges 
on surface 

C 11.0 85 59 1.7 1.4 1.3 0.83 
 
The volume prediction obtained with the numerical model is compared to the volume measurement in Figure 3. The 
model prediction agrees with the experimental data within the accuracy of the volume measurement (±0.2 mm3). 
The accuracy of the model mainly depends on how accurate the boundary conditions are provided. The results 
supported and extended the findings of ElSherbini and Jacobi (2004) on azimuthal variation of the contact angle and 
the base contour shape for droplets. 
 
The numerical solution provides the coordinates of the drop or bridge surface, which are subsequently plotted for 
visualization, revealing the full, three dimensional shape of the retained condensate. Figure 4 and 5 compares the 
calculated shapes of a drop and two bridges to profiles captured using a digital camera at three different azimuthal 
angles. The profiles at several other azimuthal angles were also compared, but were not shown here. Good 
agreement was found in the comparisons, which further validates the numerical model. The dramatically different 
shapes of bridges shown in Figure 5 were caused by the different hydrophilicity of the surfaces they rested on. 
Surfaces with differing hydrophilicity exhibit different contact-angle variation along the base contour, which in turn 
significantly affects the shape of the condensate drop or bridge forming on the fin surfaces.  Without any assumption 
on the shape of a droplet or a bridge (such as the ‘two-circle method’ proposed by ElSherbini and Jacobi, 2004), the 
model can be applied to any surface, given the azimuthal variation of the contact angle and the contact line shape are 
known. In addition to its utility in predicting the volume (or mass) of condensate retained on fin surfaces as drops or 
bridges, this model can be used to study the effects of hydrophilicity on inter-fin or inter-louver condensate bridging. 
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φ=0°   φ=90°   φ=150° 

Figure 4: A comparison of the shape of a drop on surface A captured using a digital camera from three different 
azimuthal angles (φ, the picture shows a side view to the drop/bridge when φ =0°), to the predicted shape. 

 
International Refrigeration and Air Conditioning Conference at Purdue, July 17-20, 2006 

 



 
R039, Page 7 

 

L contact line major axis   (m)  γ surface tension  (N m ) 

  

 
φ=0°   φ=90°   φ=150° 

(a) 

 
φ=0°   φ=90°   φ=135° 

(b) 
Figure 5: A comparison of the shapes of two bridges captured using a digital camera to the predicted shape: (a) on 

surface B; (b) on surface C.. 
 

5. CONCLUSIONS 
 
A model is developed to predict the shape of a drop or condensate bridge by numerically solving the Young-Laplace 
equation which governs the shape of the liquid-vapor interface. The equation is solved under the boundary 
conditions of a prescribed shape of the base contour (contact line) and variation of the contact angle along the base 
contour. The predicted shapes are compared to those obtained experimentally. The model is successful in predicting 
the shapes and volumes of condensate elements on surfaces with widely varying hydrophilicity. In addition to its 
utility in predicting the volume (or mass) of condensate retained on fin surfaces as drops or bridges, this model can 
be used to study the effects of hydrophilicity on inter-fin or inter-louver condensate bridging.  
 

NOMENCLATURE 
 
g acceleration of gravity    (m s-2)  Greek Symbols:    
K mean curvature    (m-1)  φ azimuthal angle  (°) 

-1

 
International Refrigeration and Air Conditioning Conference at Purdue, July 17-20, 2006 

 



 
R039, Page 8 

 
 

° 
m-3) 
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