15 research outputs found

    Blood pressure and expression of microRNAs in whole blood

    Get PDF
    Background: Blood pressure (BP) is a complex, multifactorial clinical outcome driven by genetic susceptibility, behavioral choices, and environmental factors. Many molecular mechanisms have been proposed for the pathophysiology of high BP even as its prevalence continues to grow worldwide, increasing morbidity and marking it as a major public health concern. To address this, we evaluated miRNA profiling in blood leukocytes as potential biomarkers of BP and BP-related risk factors. Methods: The Beijing Truck Driver Air Pollution Study included 60 truck drivers and 60 office workers examined in 2008. On two days separated by 1–2 weeks, we examined three BP measures: systolic, diastolic, and mean arterial pressure measured at both pre- and post-work exams for blood NanoString nCounter miRNA profiles. We used covariate-adjusted linear mixed-effect models to examine associations between BP and increased miRNA expression in both pooled and risk factor-stratified analyses. Results: Overall 43 miRNAs were associated with pre-work BP (FDR<0.05). In stratified analyses different but overlapping groups of miRNAs were associated with pre-work BP in truck drivers, high-BMI participants, and usual alcohol drinkers (FDR<0.05). Only four miRNAs were associated with post-work BP (FDR<0.05), in ever smokers. Conclusion: Our results suggest that many miRNAs were significantly associated with BP in subgroups exposed to known hypertension risk factors. These findings shed light on the underlying molecular mechanisms of BP, and may assist with the development of a miRNA panel for early detection of hypertension

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.Peer reviewe

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.</p

    Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects?

    No full text
    We posit that maternal prenatal nutrition can influence offspring schizophrenia risk via epigenetic effects. In this article, we consider evidence that prenatal nutrition is linked to epigenetic outcomes in offspring and schizophrenia in offspring, and that schizophrenia is associated with epigenetic changes. We focus upon one-carbon metabolism as a mediator of the pathway between perturbed prenatal nutrition and the subsequent risk of schizophrenia. Although post-mortem human studies demonstrate DNA methylation changes in brains of people with schizophrenia, such studies cannot establish causality. We suggest a testable hypothesis that utilizes a novel two-step Mendelian randomization approach, to test the component parts of the proposed causal pathway leading from prenatal nutritional exposure to schizophrenia. Applied here to a specific example, such an approach is applicable for wider use to strengthen causal inference of the mediating role of epigenetic factors linking exposures to health outcomes in population-based studies

    Cord blood DNA methylation and adiposity measures in early and mid-childhood

    Get PDF
    Background: Excess adiposity in childhood is associated with numerous adverse health outcomes. As this condition is difficult to treat once present, identification of risk early in life can help inform and implement strategies to prevent the onset of the condition. We performed an epigenome-wide association study to prospectively investigate the relationship between cord blood DNA methylation and adiposity measurements in childhood. Methods: We measured genome-wide DNA methylation from 478 children in cord blood and measured overall and central adiposity via skinfold caliper measurements in early (range 3.1–3.3 years) and mid-childhood (age range 7.3–8.3 years) and via dual X-ray absorptiometry (DXA) in mid-childhood. Final models were adjusted for maternal age at enrollment, pre-pregnancy body mass index, education, folate intake during pregnancy, smoking during pregnancy, and gestational weight gain, and child sex, race/ethnicity, current age, and cord blood cell composition. Results: We identified four promoter proximal CpG sites that were associated with adiposity as measured by subscapular (SS) and triceps (TR) ratio (SS:TR) in early childhood, in the genes KPRP, SCL9A10, MYLK2, and PRLHR. We additionally identified one gene body CpG site associated with early childhood SS + TR on PPAPDC1A; this site was nominally associated with SS + TR in mid-childhood. Higher methylation at one promoter proximal CpG site in MMP25 was also associated with SS:TR in mid-childhood. In regional analyses, methylation at an exonal region of GFPT2 was positively associated with SS:TR in early childhood. Finally, we identified regions of two long, non-coding RNAs which were associated with SS:TR (LOC100049716) and fat-free mass index (LOC102723493) in mid-childhood. Conclusion: This analysis identified novel CpG loci associated with adiposity outcomes. However, our results suggest little consistency across the various adiposity outcomes tested, particularly among the more accurate DXA measurements of body composition. We recommend using caution when interpreting these associations. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0384-9) contains supplementary material, which is available to authorized users
    corecore