2,727 research outputs found

    Rotation of electromagnetic fields and the nature of optical angular momentum

    Get PDF
    The association of spin and orbital angular momenta of light with its polarization and helical phase fronts is now well established. The problems in linking this with electromagnetic theory, as expressed in Maxwell's equations, are rather less well known. We present a simple analysis of the problems involved in defining spin and orbital angular momenta for electromagnetic fields and discuss some of the remaining challenges. Crucial to our investigation is the duplex symmetry between the electric and magnetic fields

    Taylor state dynamos found by optimal control: axisymmetric examples

    Get PDF
    Earth’s magnetic field is generated in its fluid metallic core through motional induction in a process termed the geodynamo. Fluid flow is heavily influenced by a combination of rapid rotation (Coriolis forces), Lorentz forces (from the interaction of electrical currents and magnetic fields) and buoyancy; it is believed that the inertial force and the viscous force are negligible. Direct approaches to this regime are far beyond the reach of modern high-performance computing power, hence an alternative ‘reduced’ approach may be beneficial. Taylor (Proc. R. Soc. Lond. A, vol. 274 (1357), 1963, pp. 274–283) studied an inertia-free and viscosity-free model as an asymptotic limit of such a rapidly rotating system. In this theoretical limit, the velocity and the magnetic field organize themselves in a special manner, such that the Lorentz torque acting on every geostrophic cylinder is zero, a property referred to as Taylor’s constraint. Moreover, the flow is instantaneously and uniquely determined by the buoyancy and the magnetic field. In order to find solutions to this mathematical system of equations in a full sphere, we use methods of optimal control to ensure that the required conditions on the geostrophic cylinders are satisfied at all times, through a conventional time-stepping procedure that implements the constraints at the end of each time step. A derivative-based approach is used to discover the correct geostrophic flow required so that the constraints are always satisfied. We report a new quantity, termed the Taylicity, that measures the adherence to Taylor’s constraint by analysing squared Lorentz torques, normalized by the squared energy in the magnetic field, over the entire core. Neglecting buoyancy, we solve the equations in a full sphere and seek axisymmetric solutions to the equations; we invoke - and -effects in order to sidestep Cowling’s anti-dynamo theorem so that the dynamo system possesses non-trivial solutions. Our methodology draws heavily on the use of fully spectral expansions for all divergenceless vector fields. We employ five special Galerkin polynomial bases in radius such that the boundary conditions are honoured by each member of the basis set, whilst satisfying an orthogonality relation defined in terms of energies. We demonstrate via numerous examples that there are stable solutions to the equations that possess a rapidly decreasing spectrum and are thus well-converged. Classic distributions for the - and -effects are invoked, as well as new distributions. One such new -effect model possesses oscillatory solutions for the magnetic field, rarely before seen. By comparing our Taylor state model with one that allows torsional oscillations to develop and decay, we show the equilibrium state of both configurations to be coincident. In all our models, the geostrophic flow dominates the ageostrophic flow. Our work corroborates some results previously reported by Wu & Roberts (Geophys. Astrophys. Fluid Dyn., vol. 109 (1), 2015, pp. 84–110), as well as presenting new results; it sets the stage for a three-dimensional implementation where the system is driven by, for example, thermal convection

    Characterisation of columnar inertial modes in rapidly rotating spheres and spheroids

    Get PDF
    We consider fluid-filled spheres and spheroidal containers of eccentricity Δ in rapid rotation, as a proxy for the interior dynamics of stars and planets. The fluid motion is assumed to be quasi-geostrophic (QG): horizontal motions are invariant parallel to the rotation axis z, a characteristic which is handled by use of a stream function formulation which additionally enforces mass conservation and non-penetration at the boundary. By linearising about a quiescent background state, we investigate a variety of methods to study the QG inviscid inertial wave modes which are compared with fully 3-D calculations. We consider the recently-proposed weak formulation of the inviscid system valid in spheroids of arbitrary eccentricity, to which we present novel closed-form polynomial solutions. Our modal solutions accurately represent, in both spatial structure and frequency, the most z-invariant of the inertial wave modes in a spheroid, and constitute a simple basis set for the analysis of rotationally dominated fluids. We further show that these new solutions are more accurate than those of the classical axial-vorticity equation, which is independent of Δ and thus fails to properly encode the container geometry. We also consider the effects of viscosity for the cases of both no-slip and stress-free boundary conditions for a spherical container. Calculations performed under the columnar approximation are compared with 3-D solutions and excellent agreement has been found despite fundamental differences in the two formulations

    The expression and regulation of enzymes mediating the biosynthesis of triglycerides and phospholipids in keratinocytes/epidermis

    Get PDF
    Triglycerides and phospholipids play an important role in epidermal permability barrier formation and function. They are synthesized de novo in the epidermis via the glycerol-3-phosphate pathway, catalyzed sequentially by a group of enzymes that have multiple isoforms including glycerol-3-phosphate acyltransferase (GPAT), 1-acylglycerol-3-phosphate acyltransferase (AGPAT), Lipin and diacylglycerol acyltransferase (DGAT). Here we review the current knowledge of GPAT, AGPAT, Lipin and DGAT enzymes in keratinocytes/epidermis focusing on the expression levels of the various isoforms and their localization in mouse epidermis. Additionally, the factors regulating their gene expression, including calcium induced differentiation, PPAR and LXR activators, and the effect of acute permeability barrier disruption will be discussed

    Are Commonly Used Resident Measurements Associated with Procedural Skills in Internal Medicine Residency Training?

    Get PDF
    BACKGROUND: Acquisition of competence in performing a variety of procedures is essential during Internal Medicine (IM) residency training. PURPOSES: Determine the rate of procedural complications by IM residents; determine whether there was a correlation between having 1 or more complications and institutional procedural certification status or attending ratings of resident procedural skill competence on the American Board of Internal Medicine (ABIM) monthly evaluation form (ABIM-MEF). Assess if an association exists between procedural complications and in-training examination and ABIM board certification scores. METHODS: We retrospectively reviewed all procedure log sheets, procedural certification status, ABIM-MEF procedural skills ratings, in-training exam and certifying examination (ABIM-CE) scores from the period 1990–1999 for IM residency program graduates from a training program. RESULTS: Among 69 graduates, 2,212 monthly procedure log sheets and 2,475 ABIM-MEFs were reviewed. The overall complication rate was 2.3/1,000 procedures (95% CI: 1.4–3.1/1,000 procedure). With the exception of procedural certification status as judged by institutional faculty, there was no association between our resident measurements and procedural complications. CONCLUSIONS: Our findings support the need for a resident procedural competence certification system based on direct observation. Our data support the ABIM’s action to remove resident procedural competence from the monthly ABIM-MEF ratings

    The diplomat's dilemma: Maximal power for minimal effort in social networks

    Full text link
    Closeness is a global measure of centrality in networks, and a proxy for how influential actors are in social networks. In most network models, and many empirical networks, closeness is strongly correlated with degree. However, in social networks there is a cost of maintaining social ties. This leads to a situation (that can occur in the professional social networks of executives, lobbyists, diplomats and so on) where agents have the conflicting objectives of aiming for centrality while simultaneously keeping the degree low. We investigate this situation in an adaptive network-evolution model where agents optimize their positions in the network following individual strategies, and using only local information. The strategies are also optimized, based on the success of the agent and its neighbors. We measure and describe the time evolution of the network and the agents' strategies.Comment: Submitted to Adaptive Networks: Theory, Models and Applications, to be published from Springe

    Simulation of cell-substrate traction force dynamics in response to soluble factors

    Get PDF
    Finite element (FE) simulations of contractile responses of vascular muscular thin films (vMTFs) and endothelial cells resting on an array of micro-posts under stimulation of soluble factors were conducted in comparison with experimental measurements reported in literature. Two types of constitutive models were employed in the simulations, i.e. smooth muscle cell type and non-smooth muscle cell type. The time histories of the effects of soluble factors were obtained via calibration against experimental measurements of contractile responses of tissues or cells. The numerical results for vMTFs with micropatterned tissues suggest that the radius of curvature of vMTFs under stimulation of soluble factors is sensitive to width of the micropatterned tissue, i.e. the radius of curvature increases as the tissue width decreases. However, as the tissue response is essentially isometric, the time history of the maximum principal stress of the micropatterned tissues is not sensitive to tissue width. Good agreement has been achieved for predictions of the vasoconstrictor endothelin-1 (ET-1) induced contraction stress between the FE numerical simulation and the experiment based approach of Alford, et al. (2011) for the vMTFs with 40, 60, 80 and 100 ÎŒm width patterns. This may suggest the contraction stress is weakly sensitive to the tissue width for these patterns. However, for 20 ÎŒm width tissue patterning, the numerical simulation result for contraction stress is less than the average value of experimental measurements, which may suggest the thinner and more elongated spindle-like cells within the 20 ÎŒm width tissue patterning have higher contractile output. The constitutive model for non-smooth muscle cells was used to simulate the contractile response of the endothelial cells. The substrate was treated as an effective continuum. For agonists such as Lysophosphatidic acid (LPA) and vascular endothelial growth factor (VEGF), the deformation of the cell diminishes from edge to centre and the central part of the cell is essentially under isometric state. Numerical studies demonstrated the scenarios that cell polarity can be triggered via manipulation of the effective stiffness and Possion’s ratio of the substrate

    Aza-deoxycytidine induces apoptosis or differentiation via DNMT3B and targets embryonal carcinoma cells but not their differentiated derivatives

    Get PDF
    Background: Teratocarcinoma is a malignant male germ cell tumour, which contains stem cells and differentiated cancer tissues. DNMT3B has been shown to be highly expressed in human teratocarcinoma stem cells, and to mediate cytotoxicity of Aza-deoxycytidine (Aza-dC) in a pluripotent stem cell line NTERA2. Methods: We have established DNMT3B or POU5F1 (hereafter referred to as OCT4) knockdown in teratocarcinoma stem cells N2102Ep and TERA1 and in the pluripotent NTERA2 by a doxycycline-inducible system, and tested the cytotoxicity induced by Aza-dC. Results: Silencing of DNMT3B led to apoptosis of human teratocarcinoma stem cells N2102Ep and TERA1. Further, we found that induction of apoptosis or differentiation in NTERA2 and human embryonic stem cells by Aza-dC requires DNMT3B. To test whether Aza-dC inhibits proliferation of differentiated teratocarcinoma cells, we depleted OCT4 expression in N2102Ep and TERA1 cells treated with Aza-dC. Treatment with Aza-dC reduced cell number of differentiated cells to a lesser extent than their undifferentiated parental stem cells. Moreover, in contrast to the stem cells, Aza-dC failed to induce apoptosis of differentiated cells. Conclusions: Our finding suggests that DNMT3B acts as an antiapoptotic gene in teratocarcinoma stem cells, and mediates apoptosis and differentiation of human pluripotent stem cells induced by Aza-dC, and that Aza-dC specifically induces apoptosis of teratocarcinoma stem cells

    The Hidden Curriculum of Veterinary Education: Mediators and Moderators of Its Effects

    Get PDF
    The “hidden curriculum” has long been supposed to have an effect on students' learning during their clinical education, and in particular in shaping their ideas of what it means to be a professional. Despite this, there has been little evidence linking specific changes in professional attitudes to the individual components of the hidden curriculum. This study aimed to recognize those components that led to a change in students' professional attitudes at a UK veterinary school, as well as to identify the attitudes most affected. Observations were made of 11 student groups across five clinical rotations, followed by semi-structured interviews with 23 students at the end of their rotation experience. Data were combined and analyzed thematically, taking both an inductive and deductive approach. Views about the importance of technical competence and communication skills were promoted as a result of students' interaction with the hidden curriculum, and tensions were revealed in relation to their attitudes toward compassion and empathy, autonomy and responsibility, and lifestyle ethic. The assessment processes of rotations and the clinical service organization served to communicate the messages of the hidden curriculum, bringing about changes in student professional attitudes, while student-selected role models and the student rotation groups moderated the effects of these influences

    Accuracy and repeatability of wrist joint angles in boxing using an electromagnetic tracking system

    Get PDF
    © 2019, The Author(s). The hand-wrist region is reported as the most common injury site in boxing. Boxers are at risk due to the amount of wrist motions when impacting training equipment or their opponents, yet we know relatively little about these motions. This paper describes a new method for quantifying wrist motion in boxing using an electromagnetic tracking system. Surrogate testing procedure utilising a polyamide hand and forearm shape, and in vivo testing procedure utilising 29 elite boxers, were used to assess the accuracy and repeatability of the system. 2D kinematic analysis was used to calculate wrist angles using photogrammetry, whilst the data from the electromagnetic tracking system was processed with visual 3D software. The electromagnetic tracking system agreed with the video-based system (paired t tests) in both the surrogate ( 0.9). In the punch testing, for both repeated jab and hook shots, the electromagnetic tracking system showed good reliability (ICCs > 0.8) and substantial reliability (ICCs > 0.6) for flexion–extension and radial-ulnar deviation angles, respectively. The results indicate that wrist kinematics during punching activities can be measured using an electromagnetic tracking system
    • 

    corecore