102 research outputs found

    A cascaded laser acceleration scheme for the generation of spectrally controlled proton beams

    Get PDF
    We present a novel, cascaded acceleration scheme for the generation of spectrally controlled ion beams using a laser-based accelerator in a 'double-stage' setup. An MeV proton beam produced during a relativistic laser–plasma interaction on a thin foil target is spectrally shaped by a secondary laser–plasma interaction on a separate foil, reliably creating well-separated quasi-monoenergetic features in the energy spectrum. The observed modulations are fully explained by a one-dimensional (1D) model supported by numerical simulations. These findings demonstrate that laser acceleration can, in principle, be applied in an additive manner.Deutsche Forschungsgemeinschaft (DFG contract no. TR18)Deutsche Forschungsgemeinschaft (contract no. 03ZIK052)European Union (Laserlab Europe

    Thermal effects on atomic friction

    Full text link
    We model friction acting on the tip of an atomic force microscope as it is dragged across a surface at non-zero temperatures. We find that stick-slip motion occurs and that the average frictional force follows ∣ln⁥v∣2/3|\ln v|^{2/3}, where vv is the tip velocity. This compares well to recent experimental work (Gnecco et al, PRL 84, 1172), permitting the quantitative extraction of all microscopic parameters. We calculate the scaled form of the average frictional force's dependence on both temperature and tip speed as well as the form of the friction-force distribution function.Comment: Accepted for publication, Physical Review Letter

    Metastability in Josephson transmission lines

    Full text link
    Thermal activation and macroscopic quantum tunneling in current-biased discrete Josephson transmission lines are studied theoretically. The degrees of freedom under consideration are the phases across the junctions which are coupled to each other via the inductances of the system. The resistively shunted junctions that we investigate constitute a system of N interacting degrees of freedom with an overdamped dynamics. We calculate the decay rate within exponential accuracy as a function of temperature and current. Slightly below the critical current, the decay from the metastable state occurs via a unique ("rigid") saddlepoint solution of the Euclidean action describing the simultaneous decay of the phases in all the junctions. When the current is reduced, a crossover to a regime takes place, where the decay occurs via an "elastic" saddlepoint solution and the phases across the junctions leave the metastable state one after another. This leads to an increased decay rate compared with the rigid case both in the thermal and the quantum regime. The rigid-to-elastic crossover can be sharp or smooth analogous to first- or second- order phase transitions, respectively. The various regimes are summarized in a current-temperature decay diagram.Comment: 11 pages, RevTeX, 3 PS-figures, revised versio

    Direct observation of the injection dynamics of a laser wakefield accelerator using few-femtosecond shadowgraphy

    Get PDF
    International audienceWe present few-femtosecond shadowgraphic snapshots taken during the non-linear evolution of the plasma wave in a laser wakefield accelerator with transverse synchronized few-cycle probe pulses. These snapshots can be directly associated with the electron density distribution within the plasma wave and give quantitative information about its size and shape. Our results show that self-injection of electrons into the first plasma wave period is induced by a lengthening of the first plasma period. Three dimensional particle in cell simulations support our observations

    Pioneer Anomaly and the Kuiper Belt mass distribution

    Full text link
    Pioneer 10 and 11 were the first probes sent to study the outer planets of the Solar System and Pioneer 10 was the first spacecraft to leave the Solar System. Besides their already epic journeys, Pioneer 10 and 11 spacecraft were subjected to an unaccounted effect interpreted as a constant acceleration toward the Sun, the so-called Pioneer anomaly. One of the possibilities put forward for explaining the Pioneer anomaly is the gravitational acceleration of the Kuiper Belt. In this work we examine this hypothesis for various models for the Kuiper Belt mass distribution. We find that the gravitational effect due to the Kuiper Belt cannot account for the Pioneer anomaly. Furthermore, we have also studied the hypothesis that drag forces can explain the the Pioneer anomaly; however we conclude that the density required for producing the Pioneer anomaly is many orders of magnitude greater than those of interplanetary and interstellar dust. Our conclusions suggest that only through a mission, the Pioneer anomaly can be confirmed and further investigated. If a mission with these aims is ever sent to space, it turns out, on account of our results, that it will be also a quite interesting probe to study the mass distribution of the Kuiper Belt.Comment: Plain latex; 17 pages, 12 figures. Version to appear in Classical and Quantum Gravity (2006

    Crossover from thermal hopping to quantum tunneling in Mn_{12}Ac

    Full text link
    The crossover from thermal hopping to quantum tunneling is studied. We show that the decay rate Γ\Gamma with dissipation can accurately be determined near the crossover temperature. Besides considering the Wentzel-Kramers-Brillouin (WKB) exponent, we also calculate contribution of the fluctuation modes around the saddle point and give an extended account of a previous study of crossover region. We deal with two dangerous fluctuation modes whose contribution can't be calculated by the steepest descent method and show that higher order couplings between the two dangerous modes need to be taken into considerations. At last the crossover from thermal hopping to quantum tunneling in the molecular magnet Mn_{12}Ac is studied.Comment: 10 pages, 3 figure

    Unilateral congenital elongation of the cervical part of the internal carotid artery with kinking and looping: two case reports and review of the literature

    Get PDF
    Unilateral and bilateral variation in the course and elongation of the cervical (extracranial) part of the internal carotid artery (ICA) leading to its tortuosity, kinking and coiling or looping is not a rare condition, which could be caused by both embryological and acquired factors. Patients with such variations may be asymptomatic in some cases; in others, they can develop cerebrovascular symptoms due to carotid stenosis affecting cerebral circulation. The risk of transient ischemic attacks in patients with carotid stenosis is high and its surgical correction is indicated for the prevention of ischemic stroke. Detection of developmental variations of the ICA and evaluation of its stenotic areas is very important for surgical interventions and involves specific diagnostic imaging techniques for vascular lesions including contrast arteriography, duplex ultrasonography and magnetic resonance angiography. Examination of obtained images in cases of unusual and complicated variations of vascular pattern of the ICA may lead to confusion in interpretation of data. Awareness about details and topographic anatomy of variations of the ICA may serve as a useful guide for both radiologists and vascular surgeons. It may help to prevent diagnostic errors, influence surgical tactics and interventional procedures and avoid complications during the head and neck surgery. Our present study was conducted with a purpose of updating data about developmental variations of the ICA. Dissections of the main neurovascular bundle of the head and neck were performed on a total 14 human adult cadavers (10 – Africans: 7 males & 3 females and 4 – East Indians: all males). Two cases of unilateral congenital elongation of the cervical part of the ICA with kinking and looping and carotid stenoses were found only in African males. Here we present their detailed case reports with review of the literature

    Frank-Condon principle and adjustment of optical waveguides with nonhomogeneous refractive indices

    Full text link
    The adjustment of two different selfocs is considered using both exact formulas for the mode-connection coefficients expressed in terms of Hermite polynomials of several variables and a qualitative approach based on the Frank-Condon principle. Several examples of the refractive-index dependence are studied and illustrative plots for these examples are presented. The connection with the tomographic approach to quantum states of a two-dimensional oscillator and the Frank-Condon factors is established.Comment: 8 pages, 4 figures, published version (layout of figures changed, typos corrected, references added
    • 

    corecore